

4506 Group User's Manual

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER
4500 SERIES

Before using this material, please visit our website to confirm that this is the most current document available.

Rev. 2.01

Revision date: Feb 07, 2005

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

REVISION HISTORY

4506 Group User's Manual

Rev.	Date		Description
		Page	Summary
1.00	Nov 29, 2002	_	First edition issued
	Aug 27, 2004		Words standardized: On-chip oscillator, A/D converter "Ta=25°C" added. Description of RESET pin revised. Fig.20: Some description added. Fig.22: Note 5 added. Some description revised. Fig.25: "DI" instruction added. Table 11: Revised. Table 15: Port level revised, Note 5 added. Fig.47: Some description added. Note on Power Source Voltage added. Table 2.6.1: Port level revised, Note 5 added. Some description added. Fig.3.3.3: Some description revised. Note on Power Source Voltage added.
2.01	Feb 07, 2005	1-2 1-4 1-29 1-48 1-102 1-103 2-32 3-35 3-46	Package name revised. Package name revised. Timer 1 and timer 2 count start timing and count time when operation starts added. Timer 1 and timer 2 count start timing and count time when operation starts added. Package name revised. Package name revised. (6) Timer 1 and timer 2 count start timing and count time when operation starts added. (6) Timer 1 and timer 2 count start timing and count time when operation starts added. Package outline revised.

BEFORE USING THIS USER'S MANUAL

This user's manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development.

1. Organization

• CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer and operation of each peripheral function.

CHAPTER 2 APPLICATION

This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of related registers.

CHAPTER 3 APPENDIX

This chapter includes necessary information for systems development using the microcomputer, such as the electrical characteristics, the list of registers.

As for the Mask ROM confirmation form, the ROM programming confirmation form, and the Mark specification form which are to be submitted when ordering, refer to the "Renesas Technology Corp." Hompage (http://www.renesas.com/en/rom).

As for the Development tools and related documents, refer to the Software and Tools (http://www.renesas.com/en/tools) of "Renesas Technology Corp." Homepage.

Table of contents

CHAPTER 1 HARDWARE ■

DESCRIPTION	1-2
FEATURES	
APPLICATION	1-2
PIN CONFIGURATION	
BLOCK DIAGRAM	1-3
PERFORMANCE OVERVIEW	1-4
PIN DESCRIPTION	1-5
MULTIFUNCTION	1-5
PORT FUNCTION	1-6
DEFINITION OF CLOCK AND CYCLE	1-6
CONNECTIONS OF UNUSED PINS	1-7
PORT BLOCK DIAGRAMS	1-8
FUNCTION BLOCK OPERATIONS	1-13
CPU	1-13
PROGRAM MEMOY (ROM)	1-16
DATA MEMORY (RAM)	1-17
INTERRUPT FUNCTION	1-18
EXTERNAL INTERRUPTS	1-22
TIMERS	1-25
WATCHDOG TIMER	1-30
A/D CONVERTER	1-32
RESET FUNCTION	1-37
RAM BACK-UP MODE	1-40
CLOCK CONTROL	
ROM ORDERING METHOD	
LIST OF PRECAUTIONS	
CONTROL REGISTERS	
INSTRUCTIONS	
SYMBOL	
INDEX LIST OF INSTRUCTION FUNCTION	
MACHINE INSTRUCTIONS (INDEX BY ALPHABET)	
MACHINE INSTRUCTIONS (INDEX BY TYPES)	
INSTRUCTION CODE TABLE	
BUILT-IN PROM VERSION	1-102

CHAPTER 2 APPLICATION ■

2.1 I/O pins	2-2
2.1.1 I/O ports	2-2
2.1.2 Related registers	2-5
2.1.3 Port application examples	2-9
2.1.4 Notes on use	2-10
2.2 Interrupts	2-12
2.2.1 Interrupt functions	2-12
2.2.2 Related registers	2-13
2.2.3 Interrupt application examples	2-16
2.2.4 Notes on use	2-20
2.3 Timers	2-21
2.3.1 Timer functions	2-21
2.3.2 Related registers	2-22
2.3.3 Timer application examples	2-24
2.3.4 Notes on use	2-31
2.4 A/D converter	2-33
2.4.1 Related registers	2-34
2.4.2 A/D converter application examples	2-34
2.4.3 Notes on use	2-36
2.5 Reset	2-38
2.5.1 Reset circuit	2-38
2.5.2 Internal state at reset	2-39
2.5.3 Notes on use	
2.6 RAM back-up	
2.6.1 RAM back-up mode	
2.6.2 Related registers	2-42
2.6.3 Notes on use	
2.7 Oscillation circuit	
2.7.1 Oscillation circuit	
2.7.2 Oscillation operation	2-49
2.7.3 Notes on use	2-50

CHAPTER 3 APPENDIX

3.1 Electrical characteristics	3-2
3.1.1 Absolute maximum ratings	3-2
3.1.2 Recommended operating conditions	3-3
3.1.3 Electrical characteristics	3-6
3.1.4 A/D converter recommended operating conditions	3-7
3.1.5 Basic timing diagram	3-8
3.2 Typical characteristics	3-9
3.2.1 VdD-Idd characteristics	3-9
3.2.2 Frequency characteristics	3-13
3.2.3 Vol-lol characteristics (VDD = 5 V)	3-15
3.2.4 Vol-lol characteristics (VDD = 3 V)	3-17
3.2.5 Input threshold (V _{IH} -V _{IL}) characteristics (Ta = 25 °C)	
3.2.6 VDD-RPU characteristics (Ports P0-P2, D2/C, D3/K, RESET)	3-22
3.2.7 Analog input current characteristics pins Vain-Iain	3-23
3.2.8 Analog input current characteristics pins Vain-Iain	3-25
3.2.9 A/D converter operation current (VDD-AIDD) characteristics (Ta = 25 °C)	3-27
3.2.10 A/D converter typical characteristics	3-28
3.3 List of precautions	
3.3.1 Program counter	
3.3.2 Stack registers (SKs)	3-31
3.3.3 Notes on I/O port	
3.3.4 Notes on interrupt	
3.3.5 Notes on timer	
3.3.6 Notes on A/D conversion	
3.3.7 Notes on reset	
3.3.8 Notes on RAM back-up	
3.3.9 Notes on oscillation control	
3.3.10 Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU.	
3.3.11 Notes on Power Source Voltage	
3.4 Notes on noise	
3.4.1 Shortest wiring length	
3.4.2 Connection of bypass capacitor across Vss line and VDD line	
3.4.3 wiring to analog input pins	
3.4.4 Oscillator concerns	
3.4.5 setup for I/O ports	
3.4.6 providing of watchdog timer function by software	
3.5 Package outline	3-46

List of figures

CHAPTER 1 HARDWARE ■

Pin configuration (top view) (4506 Group)Block diagram (4506 Group)	1-3
Port block diagram (1)	
Port block diagram (2)	
Port block diagram (3)	
Port block diagram (4)	
External interrupt circuit structure	
Fig. 1 AMC instruction execution example	
Fig. 2 RAR instruction execution example	
Fig. 3 Registers A, B and register E	
Fig. 4 TABP p instruction execution example	
Fig. 5 Stack registers (SKs) structure	
Fig. 6 Example of operation at subroutine call	
Fig. 7 Program counter (PC) structure	
Fig. 8 Data pointer (DP) structure	
Fig. 9 SD instruction execution example	
Fig. 10 ROM map of M34506M4/M34506E4	
Fig. 11 Page 1 (addresses 0080 ₁₆ to 00FF ₁₆) structure	
Fig. 12 RAM map	
Fig. 13 Program example of interrupt processing	
Fig. 14 Internal state when interrupt occurs	
Fig. 15 Interrupt system diagram	
Fig. 16 Interrupt sequence	
Fig. 17 External interrupt circuit structure	
Fig. 18 External 0 interrupt program example-1	
Fig. 19 External 0 interrupt program example-2	
Fig. 20 External 0 interrupt program example-3	
Fig. 21 Auto-reload function	
Fig. 22 Timers structure	
Fig. 23 Count timing diagram at CNTR input	
Fig. 24 Timer count start timing and count time when operation starts (T1, T2)	
Fig. 25 Watchdog timer function	
Fig. 27 Program example to enter the RAM back-up mode when using the watchdog	
rig. 27 Program example to enter the KAW back-up mode when using the watchdog	
Fig. 28 A/D conversion circuit structure	
Fig. 29 A/D conversion timing chart	
Fig. 30 Setting registers	
Fig. 31 Comparator operation timing chart	
Fig. 32 Definition of A/D conversion accuracy	
Fig. 33 Reset release timing	
Fig. 34 RESET pin input waveform and reset operation	
Fig. 35 Structure of reset pin and its peripherals, and power-on reset operation	
Fig. 36 Internal state at reset	
Fig. 37 State transition	
Fig. 38 Set source and clear source of the P flag	
Fig. 39 Start condition identified example using the SNZP instruction	
Fig. 40 Clock control circuit structure	
19. 10 clock control chourt structure	+5

	Fig. 41 Switch to ceramic resonance/RC oscillation	1-46
	Fig. 42 Handling of XIN and XOUT when operating on-chip oscillator	1-46
	Fig. 43 Ceramic resonator external circuit	1-46
	Fig. 44 External RC oscillation circuit	1-46
	Fig. 45 External clock input circuit	1-47
	Fig. 46 Timer count start timing and count time when operation starts (T1, T2)	1-48
	Fig. 47 External 0 interrupt program example-1	1-49
	Fig. 48 External 0 interrupt program example-2	1-49
	Fig. 49 External 0 interrupt program example-3	1-49
	Fig. 50 A/D conversion interrupt program example	1-50
	Fig. 51 Analog input external circuit example-1	1-50
	Fig. 52 Analog input external circuit example-2	
	Fig. 53 Flow of writing and test of the product shipped in blank	1-102
	Fig. 54 Pin configuration of built-in PROM version	1-103
CI	HAPTER 2 APPLICATION	
	Fig. 2.1.1 Key input by key scan	2-9
	Fig. 2.1.2 Key scan input timing	2-9
	Fig. 2.2.1 INT interrupt operation example	
	Fig. 2.2.2 INT interrupt setting example	2-17
	Fig. 2.2.3 Timer 1 constant period interrupt setting example	
	Fig. 2.2.4 Timer 2 constant period interrupt setting example	
	Fig. 2.3.1 Peripheral circuit example	
	Fig. 2.3.2 Watchdog timer function	2-25
	Fig. 2.3.3 Constant period measurement setting example	2-26
	Fig. 2.3.4 CNTR output setting example	2-27
	Fig. 2.3.5 CNTR input setting example	2-28
	Fig. 2.3.6 Timer start by external input setting example (1)	2-29
	Fig. 2.3.7 Timer start by external input setting example (2)	2-30
	Fig. 2.3.8 Watchdog timer setting example	2-31
	Fig. 2.3.9 Timer count start timing and count time when operation starts (T1, T2)	2-32
	Fig. 2.4.1 A/D converter structure	2-33
	Fig. 2.4.2 A/D conversion mode setting example	2-35
	Fig. 2.4.3 Analog input external circuit example-1	2-36
	Fig. 2.4.4 Analog input external circuit example-2	2-36
	Fig. 2.4.5 A/D converter operating mode program example	2-36
	Fig. 2.5.1 Structure of reset pin and its peripherals, and power-on reset operation	2-38
	Fig. 2.5.2 Oscillation stabilizing time after system is released from reset	2-38
	Fig. 2.5.3 Internal state at reset	2-39
	Fig. 2.6.1 Start condition identified example	
	Fig. 2.7.1 Switch to ceramic resonance/RC oscillation	2-47
	Fig. 2.7.2 Handling of XIN and XOUT when operating on-chip oscillator	2-47
	Fig. 2.7.3 Ceramic resonator external circuit	
	Fig. 2.7.4 External RC oscillation circuit	
	Fig. 2.7.5 Structure of clock control circuit	2-49

CHAPTER 3 APPENDIX ■

Fig. 3.2.1 A/D conversion characteristics data	3-28
Fig. 3.3.1 External 0 interrupt program example-1	3-33
Fig. 3.3.2 External 0 interrupt program example-2	3-34
Fig. 3.3.3 External 0 interrupt program example-3	3-34
Fig. 3.3.4 Timer count start timing and count time when operation starts (T1, T2)	3-35
Fig. 3.3.5 Analog input external circuit example-1	3-36
Fig. 3.3.6 Analog input external circuit example-2	3-36
Fig. 3.3.7 A/D converter operating mode program example	3-36
Fig. 3.4.1 Selection of packages	3-40
Fig. 3.4.2 Wiring for the RESET input pin	3-40
Fig. 3.4.3 Wiring for clock I/O pins	3-41
Fig. 3.4.4 Wiring for CNVss pin	3-41
Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version	3-42
Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line	3-42
Fig. 3.4.7 Analog signal line and a resistor and a capacitor	3-43
Fig. 3.4.8 Wiring for a large current signal line	3-43
Fig. 3.4.9 Wiring to a signal line where potential levels change frequently	3-44
Fig. 3.4.10 Vss pattern on the underside of an oscillator	3-44
Fig. 3.4.11 Watchdog timer by software	3-45

List of tables

CHAPTER 1 HARDWARE	
Table Selection of system clock	1-6
Table 1 ROM size and pages	
Table 2 RAM size	
Table 3 Interrupt sources	
Table 4 Interrupt request flag, interrupt enable bit and skip instruction	
Table 5 Interrupt enable bit function	
Table 6 Interrupt control registers	
Table 7 External interrupt activated conditions	
Table 8 External interrupt control register	
Table 9 Function related timers	
Table 10 Timer control registers	
Table 11 A/D converter characteristics	
Table 12 A/D control registers	1-33
Table 13 Change of successive comparison register AD during A/D conversion	1-34
Table 14 Port state at reset	1-38
Table 15 Functions and states retained at RAM back-up	1-40
Table 16 Return source and return condition	1-41
Table 17 Key-on wakeup control register	1-43
Table 18 Pull-up control register and interrupt control register	1-44
Table 19 Clock control register MR	1-47
Table 20 Product of built-in PROM version	1-102
OLIARTER & ARRIVATION	
CHAPTER 2 APPLICATION	
Table 2.1.1 Key-on wakeup control register K0	2-5
Table 2.1.2 Pull-up control register PU0	
Table 2.1.3 Key-on wakeup control register K1	2-6
Table 2.1.4 Pull-up control register PU1	2-6
Table 2.1.5 Key-on wakeup control register K2	2-7
Table 2.1.6 Pull-up control register PU2	
Table 2.1.7 Timer control register W6	2-8
Table 2.1.8 Connections of unused pins	2-11
Table 2.2.1 Interrupt control register V1	2-13
Table 2.2.2 Interrupt control register V2	2-14
Table 2.2.3 Interrupt control register I1	2-15
Table 2.3.1 Interrupt control register V1	2-22
Table 2.3.2 Timer control register W1	
Table 2.3.3 Timer control register W2	2-23
Table 2.3.4 Timer control register W6	
Table 2.3.5 Recommended operating condition of pulse width input to CNTR pin	2-32
Table 2.4.1 A/D control register Q1	
Table 2.4.2 Recommended operating conditions (when using A/D converter)	2-37
Table 2.6.1 Functions and states retained at RAM back-up mode	
Table 2.6.2 Return source and return condition	
Table 2.6.3 Start condition identification	
Table 2.6.4 Key-on wakeup control register K0	
Table 2.6.5 Key-on wakeup control register K1	2-42

Table 2.6.6 Key-on wakeup control register K22-43

Table 2.6.7 Pull-up control register PU0	2-43
Table 2.6.8 Pull-up control register PU1	2-44
Table 2.6.9 Pull-up control register PU2	2-44
Table 2.6.10 Interrupt control register I1	2-45
Table 2.7.1 Maximum value of oscillation frequency and supply voltage	2-48
CHAPTER 3 APPENDIX	
Table 3.1.1 Absolute maximum ratings	3-2
Table 3.1.2 Recommended operating conditions 1	3-3
Table 3.1.3 Recommended operating conditions 2	3-5
Table 3.1.4 Electrical characteristics	3-6
Table 3.1.5 A/D converter recommended operating conditions	3-7
Table 3.1.6 A/D converter characteristcs	3-7
Table 3.3.1 Connections of unused pins	3-32
Table 3.3.2 Recommended operating condition of pulse width input to CNTR pin	
Table 3.3.3 Recommended operating conditions (when using A/D converter)	3-37

CHAPTER 1

HARDWARE

DESCRIPTION
FEATURES
APPLICATION
PIN CONFIGURATION
BLOCK DIAGRAM
PERFORMANCE OVERVIEW
PIN DESCRIPTION
FUNCTION BLOCK OPERATIONS
ROM ORDERING METHOD
LIST OF PRECAUTIONS
CONTROL REGISTERS
INSTRUCTIONS
BUILT-IN PROM VERSION

DESCRIPTION

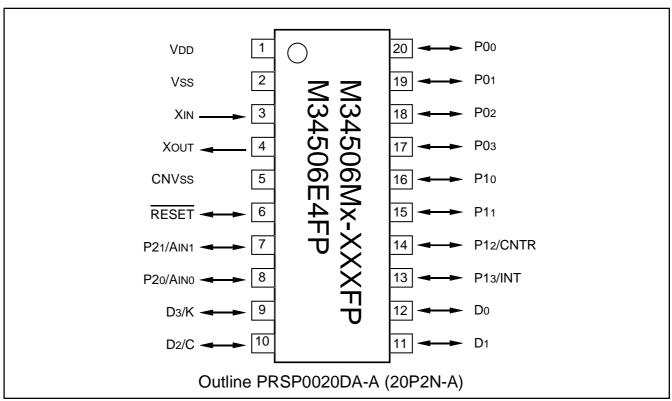
The 4506 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has a reload register), interrupts, and 10-bit A/D converter.

The various microcomputers in the 4506 Group include variations of the built-in memory size as shown in the table below.

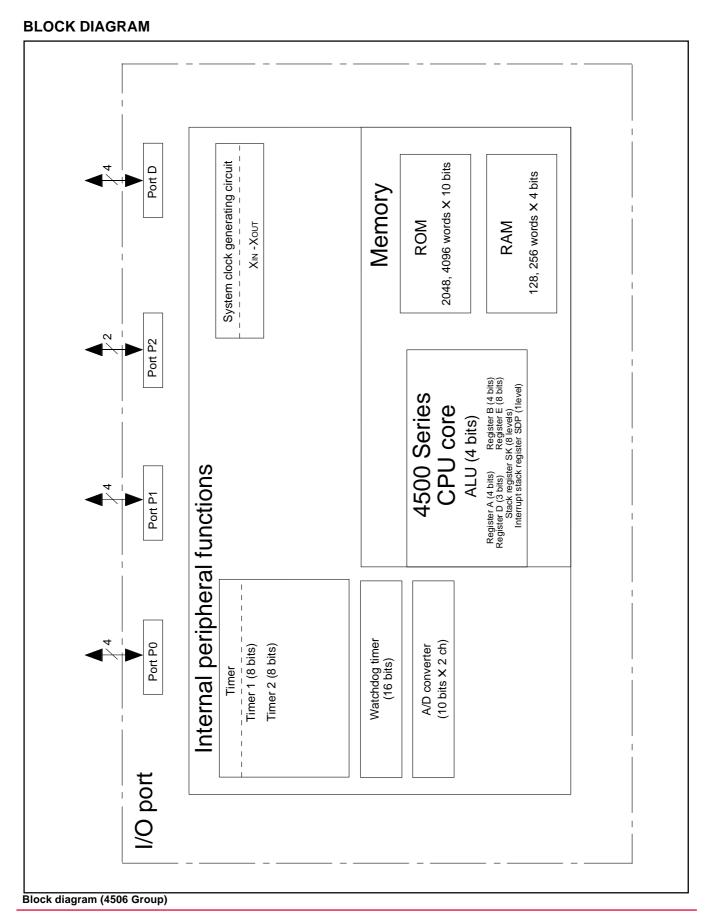
FEATURES

●Timers	
Timer 1	. 8-bit timer with a reload register
Timer 2	. 8-bit timer with a reload register
●Interrupt	4 sources
●Key-on wakeup function pins	12
●Input/Output port	14
● A/D converter10-bi	t successive comparison method
 Watchdog timer 	

- Clock generating circuit (ceramic resonator/RC oscillation)
- ●LED drive directly enabled (port D)


APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.


Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34506M2-XXXFP	2048 words	128 words	PRSP0020DA-A	Mask ROM
M34506M4-XXXFP	4096 words	256 words	PRSP0020DA-A	Mask ROM
M34506E4FP (Note)	4096 words	256 words	PRSP0020DA-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4506 Group)

PERFORMANCE OVERVIEW

Parameter			Function				
Number of basic instructions			110				
Minimum instruction execution time			0.68 μs (at 4.4 MHz oscillation frequency, in high-speed mode)				
Memory sizes	es ROM M34506M2		2048 words X 10 bits				
		M34506M4/E4	4096 words X 10 bits				
	RAM	M34506M2	128 words X 4 bits				
		M34506M4/E4	256 words X 4 bits				
Input/Output ports	D0-D3	I/O	Four independent I/O ports . Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.				
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.				
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.				
	P20, P21	I/O	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.				
	С	I/O	1-bit I/O; Port C is also used as port D2.				
	K	I/O	1-bit I/O; Port K is also used as port D3.				
	CNTR	Timer I/O	1-bit I/O; CNTR pin is also used as port P12.				
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.				
	AINO, AIN1	Analog input	Two independent I/O ports; AINO, AIN1 are also used as P20 and P21, respectively.				
Timers	Timer 1		8-bit programmable timer with a reload register.				
	Timer 2		8-bit programmable timer with a reload register and has a event counter.				
A/D converter	er		10-bit wide, This is equipped with an 8-bit comparator function.				
	Analog input		2 channel (AIN0 pin, AIN1 pin)				
Interrupt	Sources		4 (one for external, two for timer, one for A/D)				
	Nesting		1 level				
Subroutine nesting			8 levels				
Device structure			CMOS silicon gate				
Package			20-pin plastic molded SOP (PRSP0020DA-A)				
Operating temperature range		ange	-20 °C to 85 °C				
Supply voltage			$2.0~\mbox{V}$ to 5.5 V (It depends on the oscillation frequency and operating mode. Refer to the recommended operating condition.)				
Power Active mode dissipation		de	1.7 mA (Ta=25°C, VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)				
(typical value)	RAM back-up mode		0.5 mA (Ta=25°C, VDD = 3.0 V, 2.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)				
			0.1 μ A (Ta=25°C, VDD = 5 V, output transistors in the cut-off state)				

PIN DESCRIPTION

Pin	Name	Input/Output	Function	
VDD	Power supply	_	Connected to a plus power supply.	
Vss	Ground	_	Connected to a 0 V power supply.	
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.	
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer or the built-in power-on reset causes the system to be reset, the RESET pin outputs "L" level.	
XIN	System clock input	Input	$\mbox{I/O}$ pins of the system clock generating circuit. When using a ceramic resonator, it between pins XIN and XOUT. A feedback resistor is built-in between them. When	
Xout	System clock output	Output	the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.	
D0-D3	I/O port D	I/O	Each pin of port D has an independent 1-bit wide I/O function. Each pin has an output latch. For input use, set the latch of the specified bit to "1." Input is examined by skip decision. The output structure is N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.	
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.	
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.	
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P2o and P21 are also used as AINO and AIN1, respectively.	
Port C	I/O port C	I/O	1-bit I/O port. Port C can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port C has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port C is also used as port D2.	
Port K	I/O port K	I/O	1-bit I/O port. Port K can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port K has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port K is also used as port D3.	
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 2 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. This pin is also used as port P12.	
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.	
AIN0-AIN1	Analog input	Input	A/D converter analog input pins. AIN0 and AIN1 are also used as ports P20 and P21, respectively.	

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D2	С	С	D2	P20	AIN0	AIN0	P20
D3	К	K	D3	P21	AIN1	AIN1	P21
P12	CNTR	CNTR	P12				
P13	INT	INT	P13				

Notes 1: Pins except above have just single function.

- 2: The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- 3: The input of P12 can be used even when CNTR (output) is selected.
 4: The input/output of P20, P21 can be used even when AINO, AIN1 are selected.

4506 Group

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- External ceramic resonator
- External RC oscillation
- Clock (f(XIN)) by the external clock
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.
- System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the bits 2 and 3 of the clock control register MR.

Table Selection of system clock

Regist	er MR	System clock	Operation mode
MR ₃	MR3 MR2 (Note 1)		
0	0	f(XIN) or f(RING)	High-speed mode
0	1	f(XIN)/2 or f(RING)/2	Middle-speed mode
1	0	f(XIN)/4 or f(RING)/4	Low-speed mode
1	1	f(XIN)/8 or f(RING)/8	Default mode

Notes 1: The on-chip oscillator clock is f(RING), the clock by the ceramic resonator, RC oscillation or external clock is f(XIN).

2: The default mode is selected after system is released from reset and is returned from RAM back-up.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

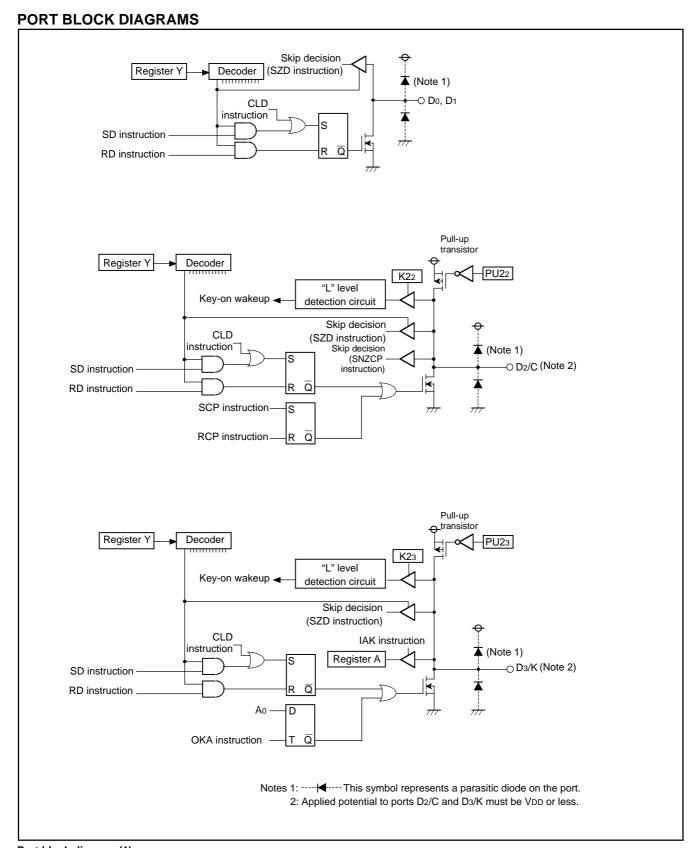
Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

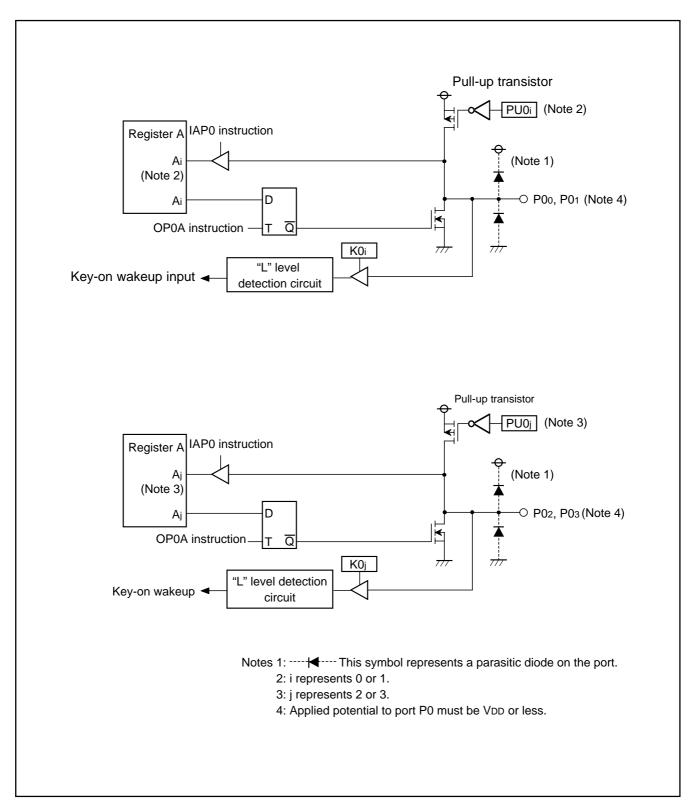
PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1 D2/C D3/K	I/O (4)	N-channel open-drain	1	SD, RD SZD, CLD SCP, RCP SNZCP IAK, OKA	PU2, K2	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P0	P00-P03	I/O (4)	N-channel open-drain	4	OP0A IAP0	PU0, K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P1	P10, P11 P12/CNTR, P13/INT	I/O (4)	N-channel open-drain	4	OP1A IAP1	PU1, K1 W6, I1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain	2	OP2A IAP2	PU2, K2 Q1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)

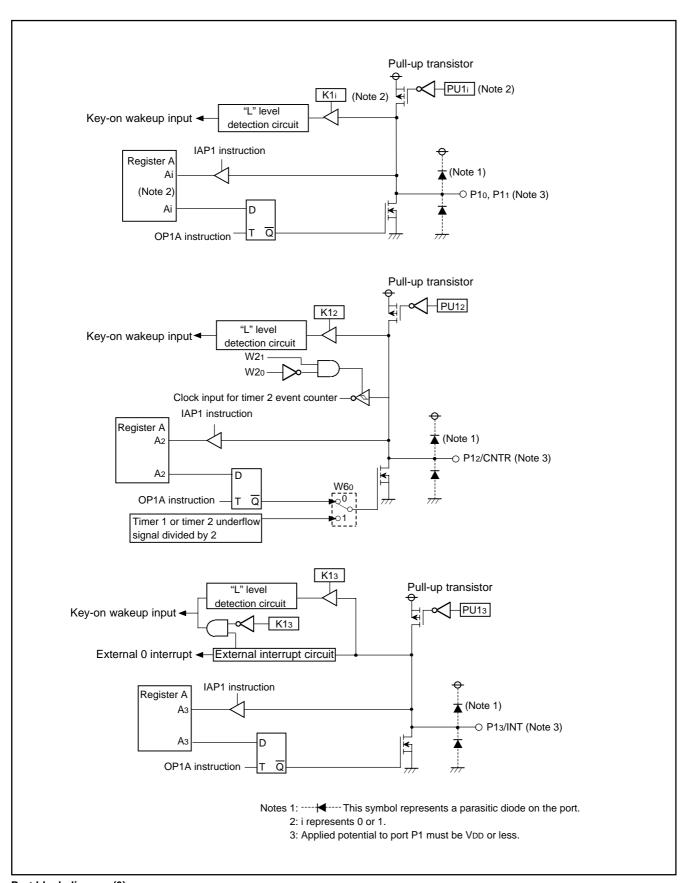
CONNECTIONS OF UNUSED PINS

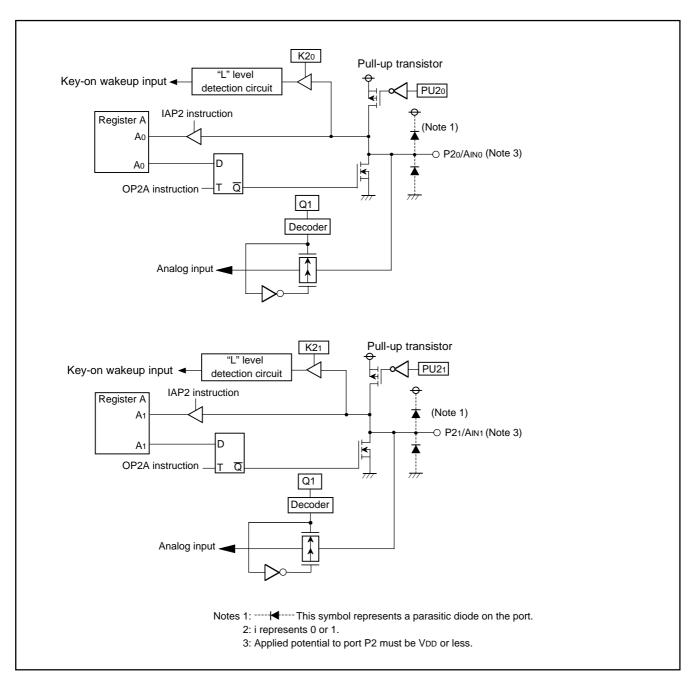

Pin	Connection	Usage condition			
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)			
Хоит	Open.	System operates by the external clock.			
		(The ceramic resonator is selected with the CMCK instruction.)			
		System operates by the RC oscillator.			
		(The RC oscillation is selected with the CRCK instruction.)			
		System operates by the on-chip oscillator. (Note 1)			
D0, D1	Open. (Output latch is set to "1.")				
	Open. (Output latch is set to "0.")				
	Connect to Vss.				
D2/C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)			
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)			
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)			
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT pin is disabled.			
		(Notes 4, 5)			
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)			
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)			

Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).

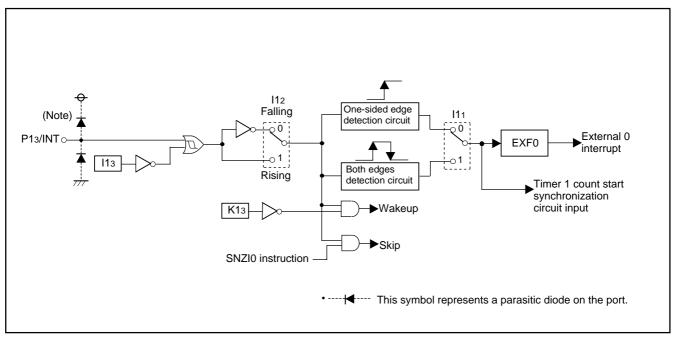

- 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
- 3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.
- 4: When selecting the key-on wakeup function, select also the pull-up function.
- 5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")

(Note when connecting to Vss)


Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.


Port block diagram (1)

Port block diagram (2)


Port block diagram (3)

Port block diagram (4)

4506 Group

4506 Group PIN DESCRIPTION

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

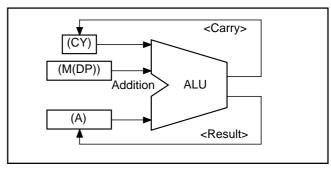


Fig. 1 AMC instruction execution example

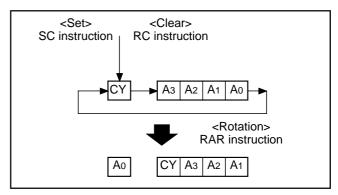


Fig. 2 RAR instruction execution example

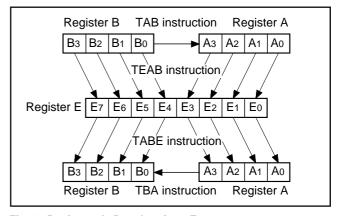


Fig. 3 Registers A, B and register E

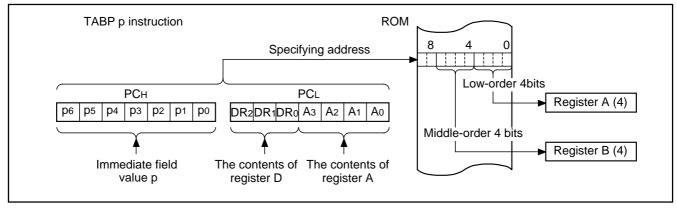


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

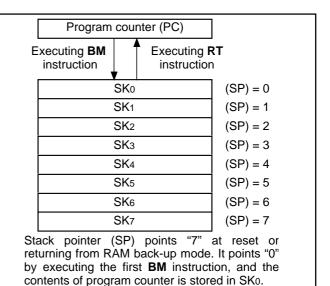
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

When the BM instruction is executed after eight

stack registers are used ((SP) = 7), (SP) = 0

and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

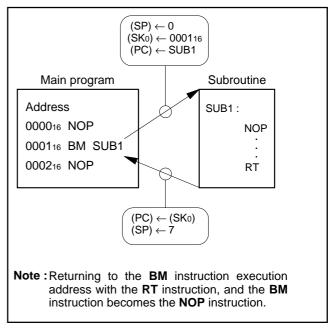


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

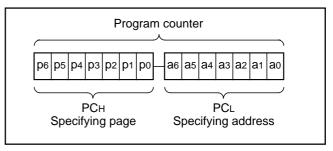


Fig. 7 Program counter (PC) structure

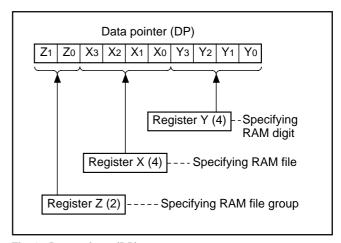


Fig. 8 Data pointer (DP) structure

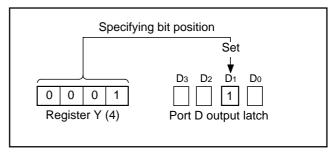


Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34506M4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34506M2	2048 words	16 (0 to 15)
M34506M4	4096 words	32 (0 to 31)
M34506E4	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP \mbox{p} instruction.

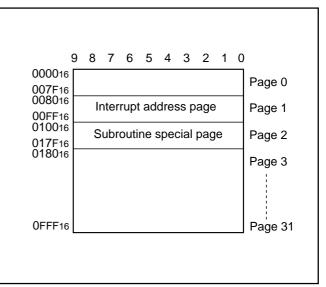


Fig. 10 ROM map of M34506M4/M34506E4

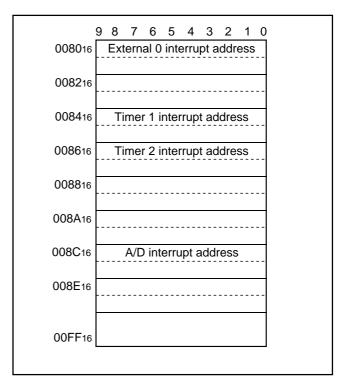


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34506M2	128 words X 4 bits (512 bits)
M34506M4	256 words X 4 bits (1024 bits)
M34506E4	256 words X 4 bits (1024 bits)

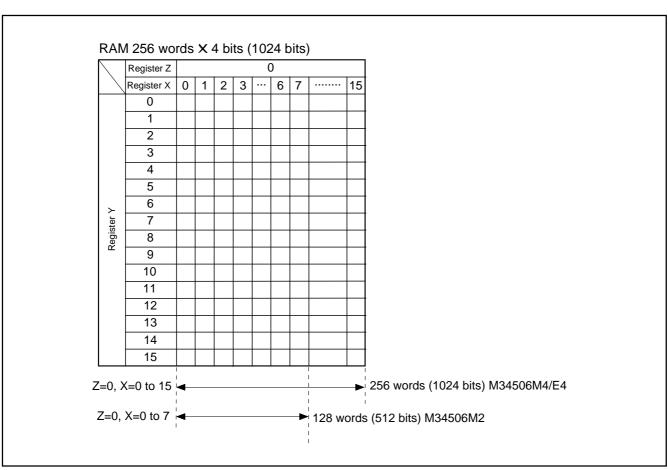


Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

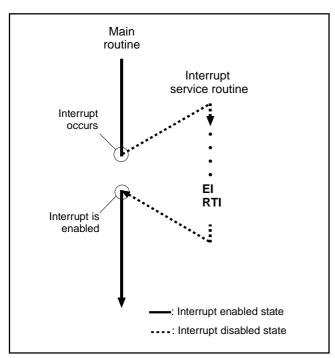


Fig. 13 Program example of interrupt processing

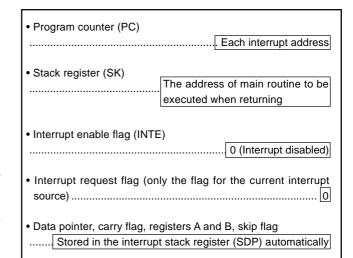


Fig. 14 Internal state when interrupt occurs

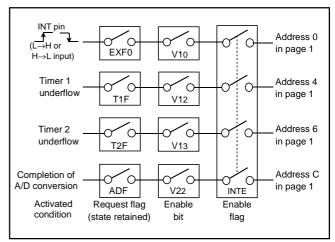


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

• Interrupt control register V2

The A/D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W		
V13 Timer 2 interrupt enable bit		0	Interrupt disabled (SNZT2 instruction is valid)				
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid) (Note 2)				
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)				
V 12	Timer i interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)				
V11	Not used	0	This bit has no function, but read/write is enabled.				
V 11	VII Not used		This bit has no function, but read/white is enabled.				
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)				
V 10	External o interrupt eriable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)				

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W	
V23 Not used		0				
V23	V23 Not used		This bit has no function, but read/write is enabled.			
1/20	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)			
V Z 2			Interrupt enabled (SNZAD instruction is invalid) (Note 2)			
1/24	Not used	0	This bit has no function, but read/write is enabled.			
V21	V2 ₁ Not used		This bit has no function, but read/write is chabled.			
1/20	Not used	0	This bit has no function, but read/write is enabled.			
V20	I NOT USEU	1				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

^{2:} These instructions are equivalent to the NOP instruction.

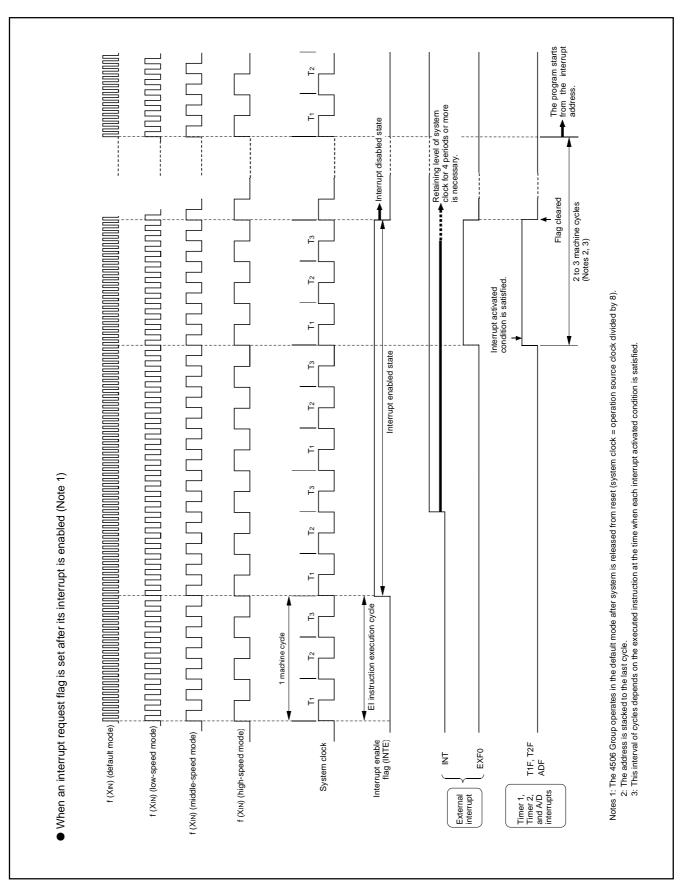


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4506 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	INT	When the next waveform is input to INT pin	I 11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

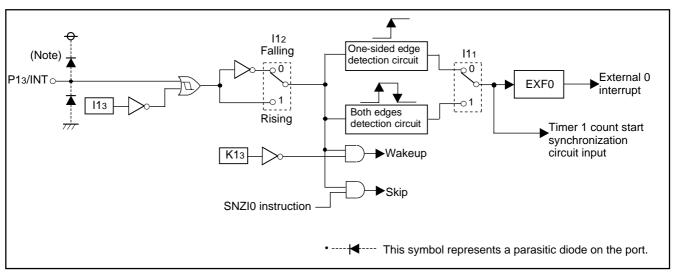


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to INT pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- 3 Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 2)	0	INT pin input disabled		
	in input control bit (Note 2)	1	INT pin input enabled		
l12	Interrupt valid waveform for INT pin/	0	Falling waveform ("L" level of INT pin is recognized with the SNZIO instruction)/"L" level		th the SNZI0
	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZIO instruction)/"H" level		
l111	INT pin edge detection circuit control bit	0	One-sided edge detected		
	INT pin edge detection circuit control bit	1	Both edges detected		
I1 0	INT pin	0	Disabled		
	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

(3) Notes on interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 182).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

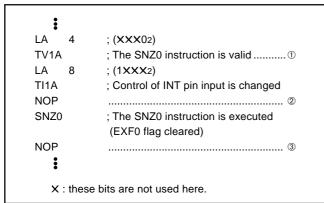


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (00XX2)
TI1A ; Input of INT disabled .......①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

③ Note [3] on bit 2 of register I1
When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the fol-

lowing notes.

• Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1 is changed. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

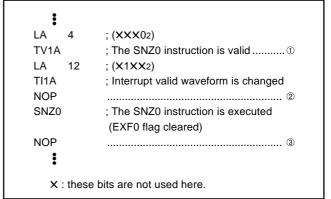


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4506 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

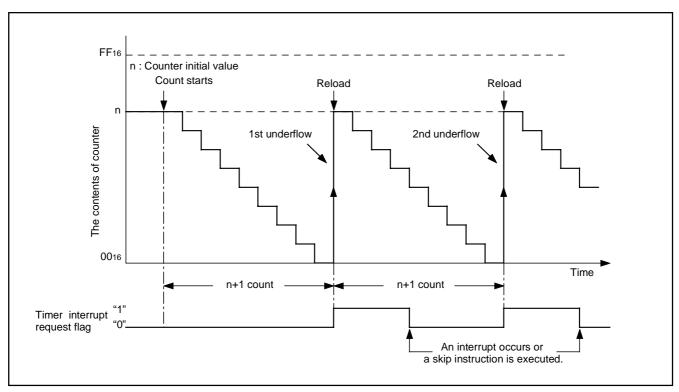


Fig. 21 Auto-reload function

The 4506 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
 (Timers 1 and 2 have the interrupt function, respectively)
- 16-bit timer

Prescaler and timers 1 and 2 can be controlled with the timer control registers W1, W2 and W6. The 16-bit timer is a free counter which is not controlled with the control register.

Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	Instruction clock	4, 16	Timer 1 and 2 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 2 count source	W1
	binary down counter			CNTR output	W2
	(link to INT input)			Timer 1 interrupt	W6
Timer 2	8-bit programmable	Timer 1 underflow	1 to 256	CNTR output	W2
	binary down counter	Prescaler output (ORCLK)		Timer 2 interrupt	W6
		CNTR input			
		System clock			
16-bit timer	16-bit fixed dividing	Instruction clock	65536	Watchdog timer	
	frequency binary down			(The 16th bit is counted twice)	
	counter				

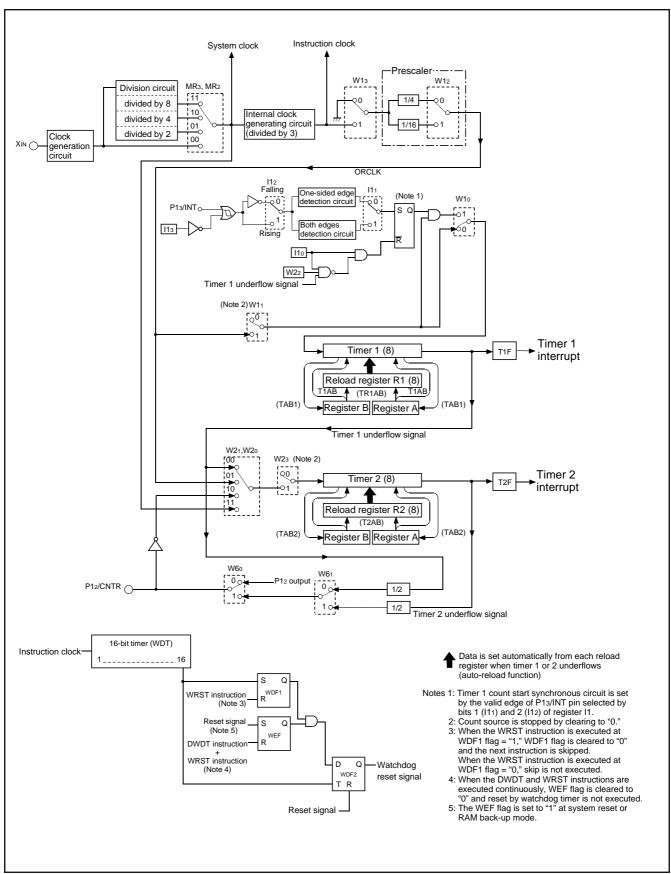


Fig. 22 Timers structure

Table 10 Timer control registers

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W
W13	Prescaler control bit	0	Stop (state initialize	Stop (state initialized)	
VVIS	Prescaler control bit	1	Operating		
W12	Prescaler dividing ratio selection bit	0	Instruction clock divided by 4		
VV 12		1	Instruction clock di	vided by 16	
W11	Timer 1 control bit	0	Stop (state retained)		
VV 11		1	Operating		
W10	Timer 1 count start synchronous circuit control bit	0	Count start synchronous circuit not selected		
		1	Count start synchro	onous circuit selected	

	Timer control register W2			reset : 00002	at RAM back-up : state retained	R/W
\\//22	W23 Timer 2 control bit)	Stop (state retained)		
VV23			1	Operating		
W22	Timer 1 count auto-stop circuit selection bit (Note 2))	Count auto-stop circuit not selected		
V V Z Z			1	Count auto-stop circuit selected		
		W21 W20			Count source	
W21			0	Timer 1 underflow	signal	
	Timer 2 count source selection bits	0	1	Prescaler output (C	Prescaler output (ORCLK)	
W20	Timer 2 count source selection bits		0	CNTR input		
			1	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W	
W63 Not used		0	This hit has no fun	This bit has no function, but read/write is enabled.		
	Not used	1	THIS DICTIOS NO TOTAL	This bit has no function, but read/write is enabled.		
W62	Not used	0	This bit has no function, but read/write is enabled.			
1 *****		1	This bit has no function, but read/write is enabled.			
W61	CNTR output selection bit	0	Timer 1 underflow signal divided by 2 output			
****		1	Timer 2 underflow signal divided by 2 output			
W60	P12/CNTR function selection bit	0	P12(I/O)/CNTR input (Note 3)			
VV00		1	P12 (input)/CNTR input/output (Note 3)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronization circuit is selected.
- 3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

(1) Timer control registers

• Timer control register W1

Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W6

Register W6 controls the P12/CNTR pin function and the selection of CNTR output. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock. Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 3 of register W1 is cleared to "0."

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Stop counting and then execute the T1AB instruction to set data to timer 1. Data can be written to reload register (R1) with the TR1AB instruction.

When writing data to reload register R1 with the TR1AB instruction, the downcount after the underflow is started from the setting value of reload register R1.

Timer 1 starts counting after the following process;

- ① set data in timer 1, and
- 2 set the bit 1 of register W1 to "1."

However, INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register W1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W2 to "1."

When a value set is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Stop counting and then execute the T2AB instruction to set data to timer 2.

Timer 2 starts counting after the following process;

- 1) set data in timer 2,
- ② select the count source with the bits 0 and 1 of register W2, and ③ set the bit 3 of register W2 to "1."

When a value set is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 instruction

(5) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register W1 to "1." The control by INT pin input can be performed by setting the bit 0 of register I1 to "1."

The count start synchronous circuit is set by level change ("H"→"L" or "L"→"H") of INT pin input. This valid waveform is selected by bits 1 (I11) and 2 (I12) of register I1 as follows;

- I11 = "0": Synchronized with one-sided edge (falling or rising)
- I11 = "1": Synchronized with both edges (both falling and rising) When register I11="0" (synchronized with the one-sided edge), the rising or falling waveform can be selected by the bit 2 of register I1;
- I12 = "0": Falling waveform
- I12 = "1": Rising waveform

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin. Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected (register W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 2 of register W2 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(8) Timer input/output pin (P12/CNTR pin)

CNTR pin is used to input the timer 2 count source and output the timer 1 and timer 2 underflow signal divided by 2.

The P12/CNTR pin function can be selected by bit 0 of register W6. The CNTR output signal can be selected by bit 1 of register W6.

When the CNTR input is selected for timer 2 count source, timer 2 counts the falling waveform of CNTR input.

(9) Precautions

Note the following for the use of timers.

Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

Count source

Stop timer 1 or 2 counting to change its count source.

•Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

•Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

•Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

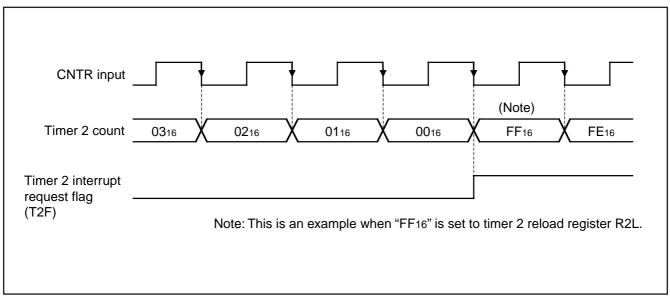


Fig. 23 Count timing diagram at CNTR input

Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

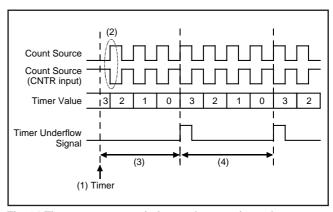


Fig. 24 Timer count start timing and count time when operation starts (T1, T2)

WATCHDOG TIMER

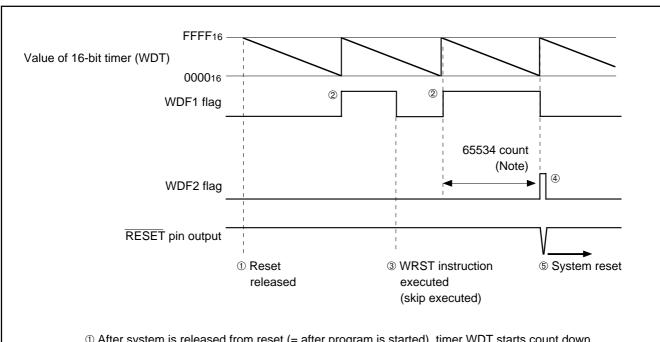
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16." the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 25 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 26). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 27). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 26 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF2
↓
Oscillation stop (RAM back-up mode)

•
```

Fig. 27 Program example to enter the RAM back-up mode when using the watchdog timer

A/D CONVERTER

The 4506 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB
	Differential non-linearity error: ±0.9LSB
Conversion speed	46.5 μ s (High-speed mode at 4.0 MHz oscillation frequency)
Analog input pin	2

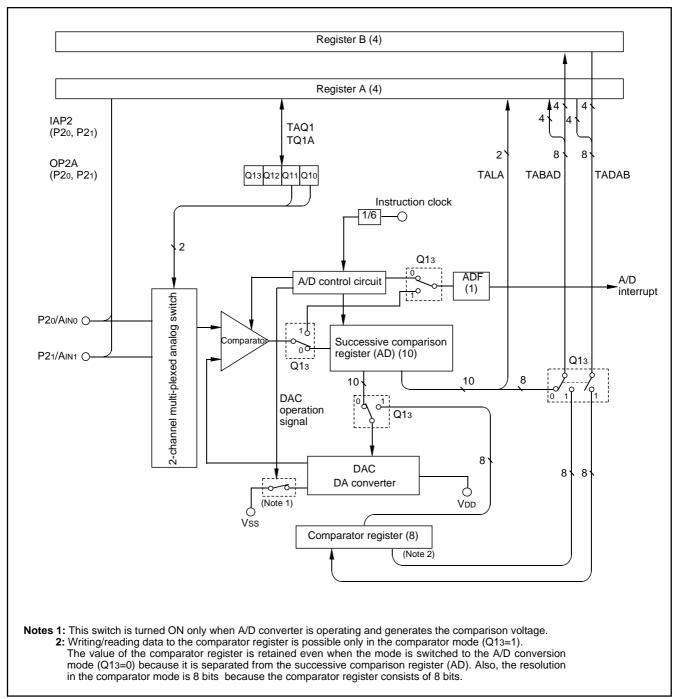


Fig. 28 A/D conversion circuit structure

Table	12	A/D	control	registers
-------	----	-----	---------	-----------

A/D control register Q1		at reset : 00002		reset : 00002	at RAM back-up : state retained R/W	
Q13	A/D an austica manda and action bit)	A/D conversion mode		
Q13	A/D operation mode selection bit	1		Comparator mode		
Q12	Not used	0		This bit has no function, but read/write is enabled.		
	Analog input pin selection bits	Q11	Q10		Selected pins	
Q11		0	0	AIN0		
		0	1	AIN1		
Q10		1	0	Not available		
			1	Not available		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(2) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage V_{ref} generated from the built-in DA converter can be obtained with the reference voltage V_{DD} by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(3) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(4) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(5) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- ① When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is V_{ref} < V_{IN}, the topmost bit of the register AD remains set to "1." When the comparison result is V_{ref} > V_{IN}, it is cleared to "0."

The 4506 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (46.5 μ s when f(XIN) = 4.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 29).

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u>
2nd comparison	*1 1 0 0 0 0 0 VDD ± VDD 4
3rd comparison	*1 *2 1 0 0 0 0 2 ± 4 ± 8
After 10th comparison	A/D conversion result VDD ± VDD VDD
completes	*1 *2 *3 *8 *9 *A 2 ± ± 1024

Table 13 Change of successive comparison register AD during A/D conversion

*1: 1st comparison result
*2: 2nd comparison result
*3: 3rd comparison result
*8: 8th comparison result
*9: 9th comparison result
*A: 10th comparison result

(7) A/D conversion timing chart

Figure 29 shows the A/D conversion timing chart.

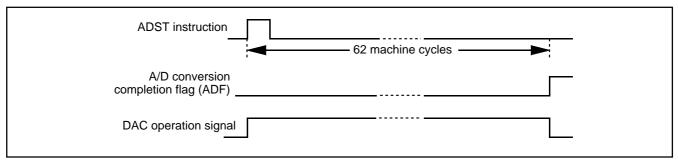


Fig. 29 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P21/AIN1 pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

- ① Select the AIN1 pin function and A/D conversion mode with the register Q1 (refer to Figure 30).
- ② Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- \circ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- ® Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

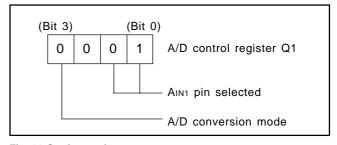


Fig. 30 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Vref =
$$\frac{VDD}{256}$$
 X n

n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for port P2 function:

· Selection of analog input pins

Even when P20/AINO, P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

(14) Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register Q1.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

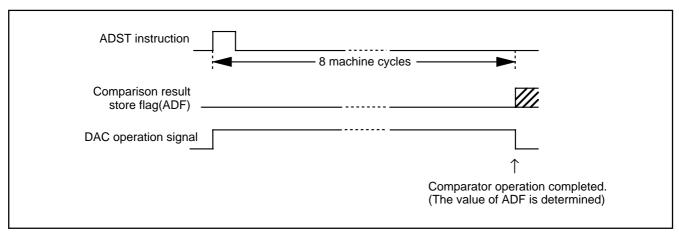


Fig. 31 Comparator operation timing chart

(15) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 32).

- · Relative accuracy
- ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

· Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy
$$\rightarrow \frac{VDD}{1024}$$
 (V)

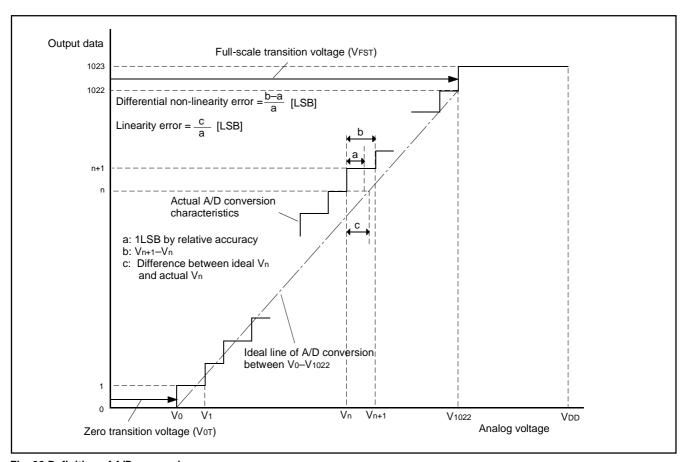


Fig. 32 Definition of A/D conversion accuracy

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

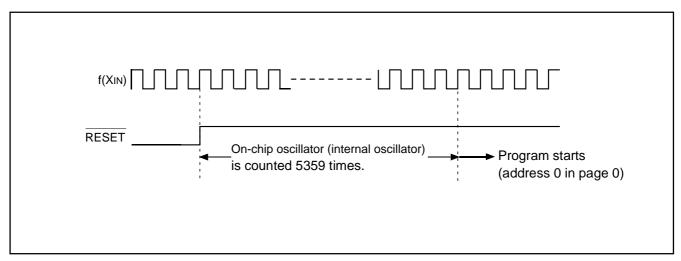


Fig. 33 Reset release timing

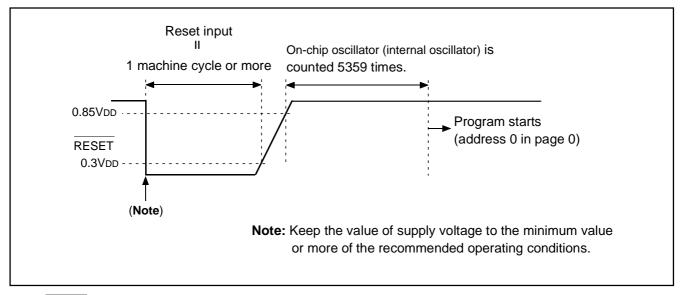


Fig. 34 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be performed automatically at power on (power-on reset) by connecting a diode and a capacitor to RESET pin. Connect RESET pin and the external circuit at the shortest distance.

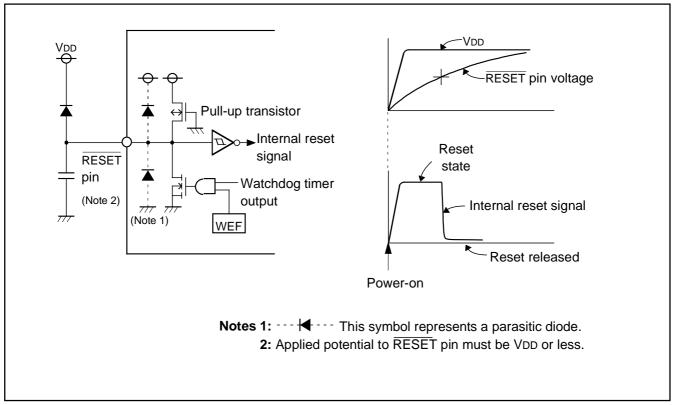


Fig. 35 Structure of reset pin and its peripherals, and power-on reset operation

Table 14 Port state at reset

Name Function		State
Do, D1	D0, D1	High-impedance (Note 1)
D2/C, D3/K	D2, D3	High-impedance (Notes 1, 2)
P00, P01, P02, P03	P00-P03	High-impedance (Notes 1, 2)
P10, P11, P12/CNTR, P13/INT	P10-P13	High-impedance (Notes 1, 2)
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2)

Notes 1: Output latch is set to "1."

2: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 36 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 36 are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	0
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1	0000
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	
Timer control register W1	
Timer control register W2	
Timer control register W6	
Clock control register MR	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	0000
Pull-up control register PU1	0 0 0 0
Pull-up control register PU2	0000
A/D conversion completion flag (ADF)	
A/D control register Q1	0000
Carry flag (CY)	0
• Register A	
Register B	0 0 0 0
Register D	X X X
Register E	
• Register X	0000
Register Y	0 0 0 0
Register Z	XX
Stack pointer (SP)	
Oscillation clock On-	chip oscillator (operating)
Ceramic resonator circuit	Operating

Fig. 36 Internal state at reset

RAM BACK-UP MODE

The 4506 Group has the RAM back-up mode.

When the POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF2 instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF2 instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 15 shows the function and states retained at RAM back-up. Figure 37 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF2 instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when:

- reset pulse is input to RESET pin, or
- reset by watchdog timer is performed, or In this case, the P flag is "0."

Table 15 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	×
carry flag (CY), stack pointer (SP) (Note 2)	^
Contents of RAM	0
Port level	(Note 5)
Selected oscillation circuit	0
Timer control register W1	X
Timer control registers W2, W6	0
Clock control register MR	X
Interrupt control registers V1, V2	X
Interrupt control register I1	0
Timer 1 function	X
Timer 2 function	(Note 3)
A/D conversion function	X
A/D control register Q1	0
Pull-up control registers PU0 to PU2	0
Key-on wakeup control registers K0 to K2	0
External 0 interrupt request flag (EXF0)	X
Timer 1 interrupt request flag (T1F)	X
Timer 2 interrupt request flag (T2F)	(Note 3)
Watchdog timer flags (WDF1)	X (Note 4)
Watchdog timer enable flag (WEF)	X
16-bit timer (WDT)	X (Note 4)
A/D conversion completion flag (ADF)	X
Interrupt enable flag (INTE)	X

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then execute the POF2 instruction.
- 5: As for the D2/C pin, the output latch of port C is set to "1" at the RAM back-up. However, the output latch of port D2 is retained. As for the other ports, their output levels are retained at the RAM back-up.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 16 shows the return condition for each return source.

(5) Control registers

• Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1
 Register K1 controls the port P1 key-on wakeup function. Set the
 contents of this register through register A with the TK1A instruc
 - contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the ports P2, D2/C and D3/K key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Pull-up control register PU0
 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction.
- Pull-up control register PU1
 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPLI1A instruction
- Pull-up control register PU2
 - Register PU2 controls the ON/OFF of the ports P2, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the TPU2A instruction.
- Interrupt control register I1
 - Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 16 Return source and return condition

F	Return source	Return condition	Remarks
	Port P0	Return by an external "L" level in-	The key-on wakeup function can be selected by one port unit. Set the port
signal	Port P1 (Note)	put.	using the key-on wakeup function to "H" level before going into the RAM back-up state.
	Port P2		back-up state.
enb	Ports D2/C, D3/K		
wakeup	Port P13/INT	Return by an external "H" level or	Select the return level ("L" level or "H" level) with the bit 2 of register I1 ac-
	(Note)	"L" level input. The return level can be selected with the bit 2	cording to the external state before going into the RAM back-up state.
External		(I12) of register I1.	
X		When the return level is input, the	
		EXF0 flag is not set.	

Note: When the bit 3 (K13) of register K1 is "0", the key-on wakeup of the INT pin is valid ("H" or "L" level). It is "1", the key-on wakeup of port P13 is valid ("L" level).

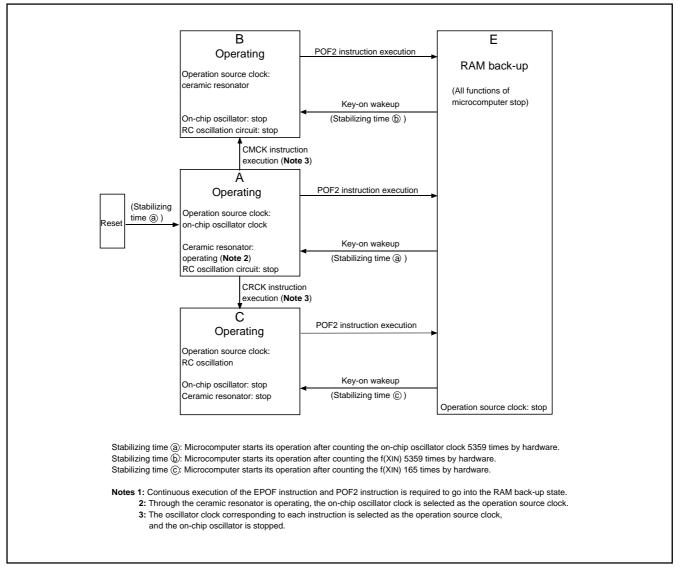


Fig. 37 State transition

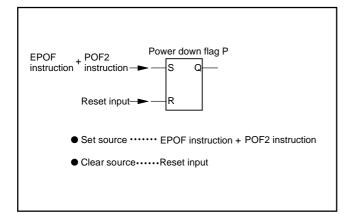


Fig. 38 Set source and clear source of the P flag

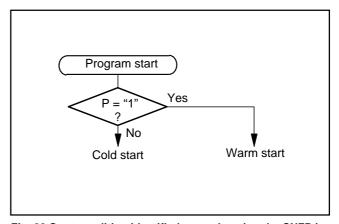


Fig. 39 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register

	able in hely on wanted position register							
	Key-on wakeup control register K0		reset: 00002	at RAM back-up : state retained	R/W			
K03	Port P03 key-on wakeup	0	Key-on wakeup not	used				
K03	control bit	1	Key-on wakeup use	ed				
1/0-	Port P02 key-on wakeup	0 Key-on wakeup not		used				
K02	control bit	1	Key-on wakeup use	ed				
140.	Port P01 key-on wakeup	0	Key-on wakeup not	ot used				
K01	control bit	1	Key-on wakeup use	ed				
I/Os	Port P00 key-on wakeup	0	Key-on wakeup not	used				
K00	control bit	1	Key-on wakeup use	ed				

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
1/10	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K13	control bit	1	P13 key-on wakeup	used/INT pin key-on wakeup not used	
V10	Port P12/CNTR key-on wakeup	0	Key-on wakeup not	t used	
K12	control bit	1	Key-on wakeup use	sed	
1/4.	Port P11 key-on wakeup	0	Key-on wakeup not	ot used	
K11	control bit	1 Key-on wakeup used		ed	
V10	Port P10 key-on wakeup	0	Key-on wakeup not used		
K10	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W	
K23	Port D ₃ /K key-on wakeup	0	Key-on wakeup not	used		
N23	control bit	1	Key-on wakeup use	ed		
K22	Port D2/C key-on wakeup	0 Key-on wakeup not		t used		
N22	control bit	1	Key-on wakeup use	sed		
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not	not used		
N21	control bit	1	Key-on wakeup use	ed		
K20	Port P20/AIN0 key-on wakeup	0 Key-on wakeup not		used		
N20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

Table 18 Pull-up control register and interrupt control register

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W
DLIOs	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DUIDo	Port P02 pull-up transistor	0 Pull-up transistor OF		FF	
PU02	control bit	1	Pull-up transistor O	N	
DUO	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1	Pull-up transistor O	N	
DUOs	Port P00 pull-up transistor	0 Pull-up transistor C		FF	
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1		reset : 00002	at RAM back-up : state retained	W
DUIA	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12/CNTR pull-up transistor	0 Pull-up transistor O		FF	
PU12	control bit	1	Pull-up transistor O	N	
DUI4.	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1 Pull-up transistor ON			
DUMA	Port P10 pull-up transistor	0 Pull-up transistor OFF		FF	
PU10	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU2		reset : 00002	at RAM back-up : state retained	W
PU23	Port D ₃ /K pull-up transistor	0	Pull-up transistor O	FF	
PU23	control bit	1	Pull-up transistor O	N	
DUIDo	Port D2/C pull-up transistor	0 Pull-up transistor OFF		FF	
PU22	control bit	1	Pull-up transistor O	N	
DUO	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF	
PU21	control bit	1 Pull-up transistor ON			
DUIDo	Port P20/AIN0 pull-up transistor	0 Pull-up transistor OFF		FF	
PU20	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 2)	0	INT pin input disab	bled	
113	INT pirt input control bit (Note 2)	1	INT pin input enab	led	
l12	Interrupt valid waveform for INT pin/	0	Falling waveform (instruction)/"L" leve	"L" level of INT pin is recognized wi	th the SNZI0
112	return level selection bit (Note 2)	1	Rising waveform ('instruction)/"H" lev	'H" level of INT pin is recognized wi	th the SNZI0
l1 ₁	INIT pip adge detection circuit control bit	0	One-sided edge de	detected	
111	INT pin edge detection circuit control bit	1	Both edges detected	ed	
I10	INT pin	0 Disabled			
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 40 shows the structure of the clock control circuit.

The 4506 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4506 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

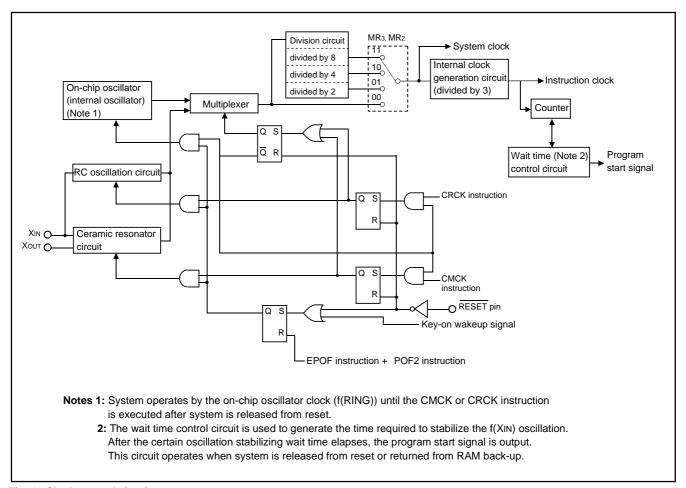


Fig. 40 Clock control circuit structure

(1) Selection of source oscillation (f(XIN))

The ceramic resonator or RC oscillation can be used for the source oscillation of the MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, the MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 42).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 43).

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 44).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

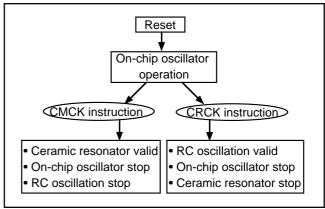


Fig. 41 Switch to ceramic resonance/RC oscillation

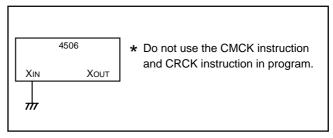


Fig. 42 Handling of XIN and XOUT when operating on-chip oscillator

Fig. 43 Ceramic resonator external circuit

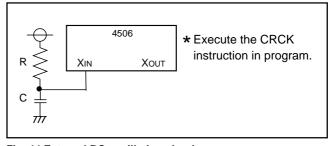


Fig. 44 External RC oscillation circuit

(5) External clock

When the external signal clock is used as the source oscillation (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 45).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF2 instruction) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

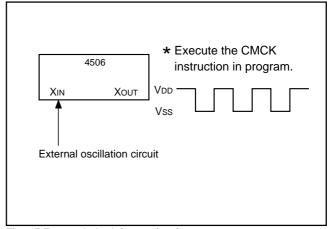


Fig. 45 External clock input circuit

Table 19 Clock control register MR

	Clock control register MR		at	reset : 11002	at RAM back-up : 11002	R/W
			MR2	System clock		
MR3	MR3 System clock selection bits	0	0	f(XIN) (high-speed mode)		
		0	1	f(XIN)/2 (middle-speed mode)		
MR2		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mod	de)	
MR1	Not your	()			
IVIET	MR1 Not used		1 This bit has no fund		tion, but read/write is enabled.	
MPo	MRo Not used	0				
IVIAU		1		This bit has no function, but read/write is enabled.		

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form 1
- (2) Data to be written into mask ROM EPROM (three sets containing the identical data)
- (3) Mark Specification Form 1

*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- · use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

6 Timer count source

Stop timer 1 or 2 counting to change its count source.

Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

® Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer 2, timer

When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.



Fig. 46 Timer count start timing and count time when operation starts (T1, T2)

[®]Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

12 Multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20 and P21 can be used even when AIN0 and AIN1 are selected.

[®]Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

^(j)POF2 instruction

When the POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF2 instruction continuously.

®P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 47^①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 47@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 47³).

```
LA
     4
           ; (XXX02)
           ; The SNZ0 instruction is valid ..... ①
TV1A
LA
           ; (1XXX2)
TI1A
           ; Control of INT pin input is changed
NOP
           ...... 2
SNZ0
           : The SNZ0 instruction is executed
            (EXF0 flag cleared)
NOP
           ...... 3
     X: these bits are not used here.
```

Fig. 47 External 0 interrupt program example-1

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 48①).

```
LA 0 ; (00XX2)

TI1A ; Input of INT disabled......①

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 48 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 49^①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 492).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 49³).

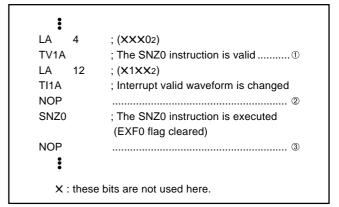


Fig. 49 External 0 interrupt program example-3

[®]Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

® External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (POF2 instructions) cannot be used.

® Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for port P2 function:

· Selection of analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" (refer to Figure 50[®]) to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register O1
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

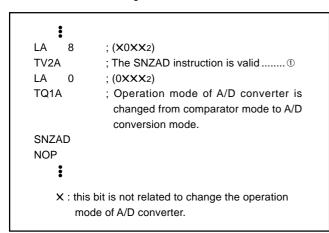


Fig. 50 A/D conversion interrupt program example

10 Notes for the use of A/D conversion 3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μF to 1 μF) to analog input pins (Figure 51). When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 52. In addition, test the application products sufficiently.

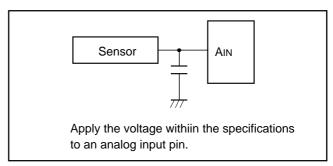


Fig. 51 Analog input external circuit example-1

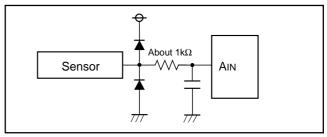


Fig. 52 Analog input external circuit example-2

Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

³ Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W	
\/10	V13 Timer 2 interrupt enable bit		Interrupt disabled (Interrupt disabled (SNZT2 instruction is valid)		
V 13			Interrupt enabled (Interrupt enabled (SNZT2 instruction is invalid) (Note 2)		
V12	V12 Timer 1 interrupt enable bit		Interrupt disabled (SNZT1 instruction is valid)			
V 12	Timer Timerrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)			
\/14	Not upod	0	This bit has no function, but read/write is enabled.			
V 11	V11 Not used		This bit has no function, but read/white is enabled.			
\/10	V/4 . External 0 interrupt anable bit		Interrupt disabled (SNZ0 instruction is valid)		
V 10	V10 External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)			

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W
\/Oc	V23 Not used				
V23			This bit has no function, but read/write is enabled.		
\/2o	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
V22	A/D Interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
V21	Not used	0	This bit has no function, but read/write is enabled.		
V Z 1	Not used		This sichas no fanotion, sacreaa, who is chasted.		
1/20	V2o Not used		This hit has no fun	ction, but read/write is enabled	
V 20	V20 Not used	1	This bit has no function, but read/write is enabled.		

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W	
l13	IAO INIT min immut accepted bit (Nexts 2)		INT pin input disab	bled		
113	INT pin input control bit (Note 3)	1	INT pin input enab	INT pin input enabled		
	Interrupt valid waveform for INT pin/	0	Falling waveform ("L" level of INT pin is recognized wi	th the SNZI0	
112		0	instruction)/"L" level			
112	return level selection bit (Note 3)	4	Rising waveform ("H" level of INT pin is recognized wi	th the SNZI0	
			instruction)/"H" lev	el		
l1 ₁	INT pin edge detection circuit control bit	0	One-sided edge de	etected		
1111	in pin eage detection circuit control bit	1	Both edges detected			
110	INT pin	0 Disabled				
110	timer 1 control enable bit	1	Enabled			

	Clock control register MR	MR a		reset : 11002	at RAM back-up : 11002	R/W
			MR2		System clock	
MR3	MR3 System clock selection bits	0	0	f(XIN) (high-speed r	node)	
		0	1	f(XIN)/2 (middle-spe	eed mode)	
MR ₂		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mo	de)	
MR1	Netwood	()			
IVIKT	MR1 Not used		1 This bit has no fun		tion, but read/write is enabled.	
MPo	MR0 Not used	(C			
IVINU		•	1	This bit has no function, but read/write is enabled.		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} These instructions are equivalent to the NOP instruction.

^{3:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

	Timer control register W1		reset : 00002	at RAM back-up : 00002	R/W		
\\\/12	W13 Prescaler control bit	0	Stop (state initialize	ed)			
VVIS	Frescaler control bit	1	Operating	Operating			
W12	W12 Prescaler dividing ratio selection bit	0	Instruction clock divided by 4				
VV 12	Frescaler dividing ratio selection bit	1	Instruction clock divided by 16				
W11	Timer 1 control bit	0	Stop (state retained	d)			
VVII	Timer i control bit	1	Operating				
W10	W10 Timer 1 count start synchronous circuit	0	Count start synchro	onous circuit not selected			
VV 10	control bit	1	Count start synchronous circuit selected				

	Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W	
W23	Timer 2 control bit	()	Stop (state retaine	d)		
1123	Timer 2 control bit	1		Operating			
W22	Timer 1 count auto-stop circuit selection	0		Count auto-stop circuit not selected			
VVZZ	bit (Note 2)	1		Count auto-stop circuit selected			
1110		W21	W20		Count source		
W21		0	0	Timer 1 underflow	Timer 1 underflow signal		
	Timer 2 count source selection bits	0	1	Prescaler output (0	ORCLK)		
W20			0	CNTR input			
		1	1	System clock	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W		
W63	W63 Not used		This bit has no function, but read/write is enabled.				
1100	Not docu	1	THIS SIC HGS HO TUIT	otion, but read, write is enabled.			
W62	W62 Not used		This bit has no function, but read/write is enabled.				
VV02	W62 Not used	1	This bit has no function, but read/white is enabled.				
W61	CNTR output selection bit	0	Timer 1 underflow signal divided by 2 output				
VVOI	CNTR output selection bit	1	Timer 2 underflow signal divided by 2 output				
Weo	W60 P12/CNTR function selection bit		P12(I/O)/CNTR input (Note 3)				
VV60			P12 (input)/CNTR input/output (Note 3)				

	A/D control register Q1		at	reset : 00002	at RAM back-up : state retained	R/W
010	A/D aparation made selection bit	()	A/D conversion mod	de	
Q13	Q13 A/D operation mode selection bit			Comparator mode		
Q12	Not used	0		This bit has no function, but read/write is enabled.		
		Q11	Q10		Selected pins	
Q11	Analog input pip colection bits	0	0	AIN0		
	Analog input pin selection bits	0	1	AIN1		
Q10	010		0	Not available		
<u> </u>		1	1	Not available		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronization circuit is selected.
3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W	
K03	Port P03 key-on wakeup	0	Key-on wakeup not	used		
K03	control bit	1	Key-on wakeup use	ed		
K02	Port P02 key-on wakeup	0 Key-on wakeup not		t used		
K02	control bit	1	Key-on wakeup use	sed		
K01	Port P01 key-on wakeup	0	Key-on wakeup not	ot used		
KU1	control bit	1 Key-on wakeup us		ed		
K00	Port P00 key-on wakeup	0 Key-on wakeup n		not used		
K00	control bit	1	Key-on wakeup use	ed		

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
K13	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K 13	control bit	1	P13 key-on wakeup	used/INT pin key-on wakeup not used	
1/40	Port P12/CNTR key-on wakeup	0	Key-on wakeup not used		
K12	control bit	1	Key-on wakeup use	ed	
1/4 /	Port P11 key-on wakeup	0	Key-on wakeup not	used	
K11	control bit	1	Key-on wakeup use	ed	
K10	Port P10 key-on wakeup		Key-on wakeup not used		
K 10	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W	
K23	Port D ₃ /K key-on wakeup	0	Key-on wakeup not	used		
N23	control bit	1	Key-on wakeup use	ed		
K22	Port D2/C key-on wakeup	0 Key-on wakeup no		ot used		
N22	control bit	1	Key-on wakeup use	ed		
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not	ot used		
NZ1	control bit	1 Key-on wakeup used		ed		
K20	Port P20/AIN0 key-on wakeup	0	Key-on wakeup not used			
K20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W
DUIDo	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DUIDo	Port P02 pull-up transistor	0 Pull-up transistor O		FF	
PU02	control bit	1	Pull-up transistor O	N	
DUIG	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1 Pull-up transistor O		N	
PU00	Port P00 pull-up transistor	0 Pull-up transistor O		FF	
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1		reset : 00002	at RAM back-up : state retained	W	
PU13	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF		
P013	control bit	1	Pull-up transistor O	N		
DUIA	Port P12/CNTR pull-up transistor	0 Pull-up transistor O		OFF		
PU12	control bit	1	Pull-up transistor O	N		
PU11	Port P11 pull-up transistor	0	Pull-up transistor O	OFF		
PUII	control bit	1 Pull-up transistor C		N		
DUIA	Port P10 pull-up transistor	0 Pull-up transistor O		FF		
PU10	control bit	1	Pull-up transistor O	N		

	Pull-up control register PU2		reset : 00002	at RAM back-up : state retained	W
PU23	Port D ₃ /K pull-up transistor	0	Pull-up transistor O	FF	
PU23	control bit	1	Pull-up transistor O	N	
DLIGo	Port D2/C pull-up transistor	0 Pull-up transistor O		FF	
PU22	control bit	1	Pull-up transistor O	N	
DUIG	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF	
PU21	control bit	1 Pull-up transistor C		N	
DLIGo	Port P20/AIN0 pull-up transistor	0 Pull-up transistor O		FF	
PU20	control bit	1	Pull-up transistor O	N	·

Notes 1: "R" represents read enabled, and "W" represents write enabled.

4506 Group INSTRUCTIONS

INSTRUCTIONS

The 4506 Group has the 110 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	WDF1	Watchdog timer flag
В	Register B (4 bits)	WEF	Watchdog timer enable flag
DR	Register D (3 bits)	INTE	Interrupt enable flag
E	Register E (8 bits)	EXF0	External 0 interrupt request flag
Q1	A/D control register Q1 (4 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)	ADF	A/D conversion completion flag
V2	Interrupt control register V2 (4 bits)		
11	Interrupt control register I1 (4 bits)	D	Port D (4 bits)
W1	Timer control register W1 (4 bits)	P0	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
W6	Timer control register W6 (4 bits)	P2	Port P2 (2 bits)
MR	Clock control register MR (4 bits)	С	Port C (1 bit)
K0	Key-on wakeup control register K0 (4 bits)	K	Port K (1 bit)
K1	Key-on wakeup control register K1 (4 bits)		
K2	Key-on wakeup control register K2 (4 bits)	х	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	у	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	z	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	р	Hexadecimal variable
X	Register X (4 bits)	n	Hexadecimal constant
Υ	Register Y (4 bits)	i	Hexadecimal constant
Z	Register Z (2 bits)	j	Hexadecimal constant
DP	Data pointer (10 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
	(It consists of registers X, Y, and Z)		(same for others)
PC	Program counter (14 bits)		
РСн	High-order 7 bits of program counter	\leftarrow	Direction of data movement
PCL	Low-order 7 bits of program counter	\leftrightarrow	Data exchange between a register and memory
SK	Stack register (14 bits X 8)	?	Decision of state shown before "?"
SP	Stack pointer (3 bits)	()	Contents of registers and memories
CY	Carry flag	_	Negate, Flag unchanged after executing instruction
R1	Timer 1 reload register	M(DP)	RAM address pointed by the data pointer
R2	Timer 2 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T1	Timer 1	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p5 p4 p3 p2 p1 p0
T1F	Timer 1 interrupt request flag	С	Hex. C + Hex. number x (also same for others)
T2F	Timer 2 interrupt request flag	+	
		x	
		1	

Note: Some instructions of the 4506 Group has the skip function to unexecute the next described instruction. The 4506 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

4506 Group INSTRUCTIONS

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
_	TAB	(A) ← (B)	75, 88		XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$	87, 88
	ТВА	(B) ← (A)	81, 88	RAM to register transfer		$j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	
	TAY	$(A) \leftarrow (Y)$	81, 88	egiste	TMA j	(M(DP)) ← (A)	83, 88
	TYA	$(Y) \leftarrow (A)$	86, 88	AM to r	11007	$(X) \leftarrow (X) = X \times (X)$ $ X = 0 \text{ to } 15$	00,00
_	TEAB	(E7–E4) ← (B) (E3–E0) ← (A)	82, 88	<u>~</u>			00.00
ansfe					LA n	(A) ← n n = 0 to 15	66, 90
Register to register transfer	TABE	$(B) \leftarrow (E7-E4)$ $(A) \leftarrow (E3-E0)$	76, 88		TABP p	(SP) ← (SP) + 1	76, 90
ster to re	TDA	$(DR2-DR0) \leftarrow (A2-A0)$	81, 88			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	
Regis	TAD	$(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$	76, 88			$(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$	
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	81, 88		AM	(SP) ← (SP) – 1	60, 90
	TAX	$(A) \leftarrow (X)$	80, 88		AMC	$(A) \leftarrow (A) + (M(DP))$	60, 90
	TASP	(A2–A0) ← (SP2–SP0) (A3) ← 0	79, 88	Ē		$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$	66, 88	Arithmetic operation	A n	$(A) \leftarrow (A) + n$ n = 0 to 15	60, 90
RAM addresses	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	66, 88	thmetic	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	61, 90
M add	INY	$(Y) \leftarrow (Y) + 1$	66, 88	Arii	OR	$(A) \leftarrow (A) OR (M(DP))$	68, 90
RA	DEY	(Y) ← (Y) − 1	63, 88		sc	(CY) ← 1	71, 90
		$(A) \leftarrow (M(DP))$			RC	(CY) ← 0	69, 90
	TAM j	$(X) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$	78, 88		SZC	(CY) = 0 ?	74, 90
ansfei	XAM j	$(A) \leftarrow \rightarrow (M(DP))$	86, 88		СМА	$(A) \leftarrow (\overline{A})$	63, 90
RAM to register transfer	AZAWI J	$(X) \leftarrow (X) \in X(X) \in X(X)$ $(X) \leftarrow (X) \in X(X) \in X(X)$ $(X) \leftarrow (X) \leftarrow (X)$ (X)	00,00		RAR	→ CY → A3A2A1A0 —	68, 90
RAM to	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$	87, 88				

Note: p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4. 4506 Group

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
c	SB j	(Mj(DP)) ← 1	70, 90		DI	$(INTE) \leftarrow 0$	64, 94
		j = 0 to 3			EI	(INTE) ← 1	64, 94
ratio	RB j	$(Mj(DP)) \leftarrow 0$	69, 90				
Bit operation		j = 0 to 3			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0	72, 94
Ξ	SZB j	(Mj(DP)) = 0 ?	74, 90			V10 = 1: SNZ0 = NOP	
		j = 0 to 3			SNZI0	140 4 (INIT) "11" O	70.04
<u> </u>	SEAM	(A) = (M(DP))?	72, 90	ation	SINZIU		73, 94
Comparison operation				nterrupt operation			
comp	SEA n	(A) = n? n = 0 to 15	71, 90	rupt o	TAV1	(A) ← (V1)	79, 94
				Inter	TV1A	(V1) ← (A)	85, 94
	Ва	(PCL) ← a6–a0	61, 92		TAV2	(A) ← (V2)	79, 94
ratio	BL p, a	(PCH) ← p (Note)	61, 92		17.02	(**)	75,54
obe ι		(PCL) ← a6–a0			TV2A	(V2) ← (A)	85, 94
Branch operation	BLA p	(PCH) ← p (Note)	61, 92		TAI1	(A) ← (I1)	77, 94
Δ.		$(PCL) \leftarrow (DR2-DR0, A3-A0)$			T14.A	(14) . (4)	00.04
	ВМа	(SP) ← (SP) + 1	62, 92		TI1A	(I1) ← (A)	82, 94
		$(SK(SP)) \leftarrow (PC)$			TAW1	(A) ← (W1)	80, 94
		(PCH) ← 2 (PCL) ← a6–a0			TW1A	(W1) ← (A)	85, 94
ion							
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	62, 92		TAW2	(A) ← (W2)	80, 94
ine o		$(PCH) \leftarrow p (Note)$			TW2A	(W2) ← (A)	85, 94
orouti		(PCL) ← a6–a0			TAW6	(A) ← (W6)	80, 94
Suk	BMLA p	(SP) ← (SP) + 1	62, 92		IAVVO	(A) ((VO)	00, 34
		$(SK(SP)) \leftarrow (PC)$		ے	TW6A	(W6) ← (A)	86, 94
		(PCH) ← p (Note) (PCL) ← $(DR2-DR0, A3-A0)$		ratio	TAB1	(B) ← (T17–T14)	75, 94
		(20)	70.00	Timer operation		(A) ← (T13–T10)	
	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	70, 92	Time	T1AB	(R17–R14) ← (B)	74, 94
						(T17−T14) ← (B)	
tion	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	70, 92			$(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	
	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	70, 92		TAB2	$(B) \leftarrow (T27-T24)$ $(A) \leftarrow (T23-T20)$	75, 94
turn c						(., \ (120 120)	
Rei					T2AB	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$	75, 94
						$(R23-R20) \leftarrow (A)$	
						(T23−T20) ← (A)	

Note: p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4. 4506 Group

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TR1AB	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	84, 94		IAK	(Ao) ← (K) (A3–A1) ← 0	65, 96
Timer operation	SNZT1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0	73, 94		OKA	(K) ← (A0)	67, 96
		V12 = 1: SNZT1 = NOP			TK0A	(K0) ← (A)	82, 96
	SNZT2	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0	73, 94	ion	TAK0	(A) ← (K0)	77, 96
		V13 = 1: SNZT2 = NOP		Input/Output operation	TK1A	(K1) ← (A)	82, 96
	IAP0	(A) ← (P0)	65, 96	Output	TAK1	(A) ← (K1)	77, 96
Input/Output operation	OP0A	(P0) ← (A)	67, 96	lnput/	TK2A	(K2) ← (A)	83, 96
	IAP1	(A) ← (P1)	65, 96		TAK2	(A) ← (K2)	78, 96
	OP1A	(P1) ← (A)	67, 96		TPU0A	(PU0) ← (A)	83, 96
	IAP2	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$	65, 96		TPU1A	(PU1) ← (A)	84, 96
	OP2A	(P21, P20) ← (A1, A0)	68, 96		TPU2A	(PU2) ← (A)	84, 96
	CLD	(D) ← 1	62, 96		TABAD	In A/D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2)	76, 98
	RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 3	69, 96			In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)	
	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 3$	71, 96		TALA	(A3, A2) ← (AD1, AD0)	78, 98
nput/Outp	SZD	(D(Y)) = 0? (Y) = 0 to 3	74, 96	ion	TADAB	$(A1, A0) \leftarrow 0$ $(AD7-AD4) \leftarrow (B)$	77, 98
ı	SCP	(C) ← 1	71, 96	A/D conversion operation		$(AD3-AD0) \leftarrow (A)$	
	RCP	(C) ← 0	69, 96	ersion	TAQ1	$(A) \leftarrow (Q1)$	79, 98
	SNZCP	(C) = 1 ?	72, 96	D conv	TQ1A	$(Q1) \leftarrow (A)$	84, 98
				A	ADST	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting	60, 98
					SNZAD	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: SNZAD = NOP	72, 98

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Function $C) \leftarrow (PC) + 1$	Page 67, 98
C) ← (PC) + 1	67, 98
	,
M back-up	68, 98
PF2 instructions valid	64, 98
) = 1 ?	73, 98
	64, 98
,	86, 98
	63, 98
Coscillation circuit selected	63, 98
) ← (MR)	78, 98
$R) \leftarrow (A)$	83, 98
	AM back-up DF2 instructions valid) = 1? op of watchdog timer func- n enabled (DF1) = 1? ter skipping, (WDF1) ← 0 eramic resonance circuit lected C oscillation circuit selected) ← (MR) IR) ← (A)

4506 Group

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

		nulator	<i>,</i>			_					Ni	Ni	Flor: OV	01.1		
Instruction code	D9 0 0	1 1	0	n r	n n	D ₀] [0	6	n	Number of words	Number of cycles	Flag CY	Skip condition		
		1' '	0	11 1	<u>' ''</u>	1"	J2	U	<u> </u>	16	1	1	-	Overflow = 0		
Operation:	(A) ← (A) +	- n									Grouping:	Arithmetic	operation			
	n = 0 to 15										Description	register A, The content Skips the overflow a Executes t	and stores s of carry fla next instru s the resul the next in	the immediate field to a result in register A. g CY remains unchanged ction when there is not tof operation. Struction when there is tof operation.		
ADST (A/D	conversio	n STar	t)													
Instruction code	D9	0 0	, 	1 1	1 1	D ₀] [2	9	F L	Number of words	Number of cycles	Flag CY	Skip condition		
	. • •						J2 l			16	1	1	_	-		
Operation:	$(ADF) \leftarrow 0$								Grouping: A/D conversion operation							
	Q13 = 1: Comparator operation starting (Q13 : bit 3 of A/D control register Q1)						flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started.									
AM (Add a		and M	lemo	ry)		D-					Nearland	Ni h a m a f	FI 0\(Oldan and distant		
Instruction code	D9 0 0	0 0	0	1 () 1	D ₀] ₂ [0	0	A 16	Number of words	Number of cycles	Flag CY	Skip condition		
Operation:	(A) ← (A) +	(M(DP)	١								Grouping:	Arithmetic	operation			
								Description: Adds the contents of M(DP) to register A Stores the result in register A. The contents of carry flag CY remains unchanged.								
AMC (Add	accumulat	or, Mer	nory	and (Carr	y)										
Instruction code	D9 0 0	0 0	0	1 () 1	D ₀] [0	0	В	Number of words	Number of cycles	Flag CY	Skip condition		
		1010		' '	<u>, </u>	<u> </u>]2			16	1	1	0/1	_		
Operation:	(A) ← (A) + (CY) ← Car		+ (C,	Y)							Grouping: Arithmetic operation Description: Adds the contents of M(DP) and carry flag					

AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 2 0 1 8	words	cycles		
	10	1	1	_	_
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation	
•		Description	: Takes the	AND opera	ation between the con-
				-	and the contents of e result in register A.
B a (Branc	n to address a)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	words	cycles		
		1	1	_	_
Operation:	(PCL) ← a6 to a0	Grouping: Branch operation			
		Description	: Branch wit	hin a page	: Branches to address
		Note:	a in the ide Specify the including the	e branch a	ddress within the page
Instruction	anch Long to address a in page p) D9 D0 D0 D0 D0 D0 D0 D0 D0 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 1 1 1 1 94 93 92 91 90 2 0 + 9 9 16	2	2	_	_
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a a ₁₆				
0		Grouping:	Branch ope		· Propohoo to address
Operation:	$(PCH) \leftarrow p$	Description	a in page p		: Branches to address
	(PCL) ← a6 to a0	Note:		5 for M345	06M2, and p is 0 to 31
BLA p (Bra	nnch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 0 1	2	2	_	_
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p p				
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Grouping: Description Note:	(DR2 DR1 registers D	t of a page DRo A3 A and A in p for M345	: Branches to address 2 A1 A0)2 specified by page p. 06M2, and p is 0 to 31

	nch and Mark to address a in page 2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a a 16	words	cycles		
		1	1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation
•	$(SK(SP)) \leftarrow (PC)$	Description	: Call the s	ubroutine	in page 2 : Calls th
	(PCH) ← 2		subroutine	at address	s a in page 2.
	(PCL) ← a6–a0	Note:	Subroutine	e extendir	ng from page 2 to a
			other page	e can also	be called with the B
					arts on page 2.
					the stack because the
			maximum I	evel of sub	routine nesting is 8.
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p	words	cycles		
		2	2	_	_
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a a ₁₆				
		Grouping:	Subroutine		
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine
	$(SK(SP)) \leftarrow (PC)$	Note:	address a		506M2, and p is 0 to 3
	$(PCH) \leftarrow p$	Note.	for M34506		odowiz, and p is o to t
	(PCL) ← a6–a0				r the stack because th
					routine nesting is 8.
			maximam	010101000	roduno nooting to o.
DMI A n /E	Proposition of Mark Long to address (D) L (A) in page	2)			
Instruction	Branch and Mark Long to address (D) + (A) in page	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 .	words	cycles		Chap containen
	0 0 0 1 1 0 0 0 0 2 0 3 0 16	2	2	_	_
	1 0 0 p4 0 0 p3 p2 p1 p0 2 p p 40		•		
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p ₁₆	Grouping:	Subroutine		
Operation:	(SP) ← (SP) + 1		: Call the su	broutine :	Calls the subroutine a
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$: Call the su address (D	broutine : DR2 DR1 D	Calls the subroutine a Ro A3 A2 A1 A0)2 spec
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	Description	address (D	broutine : R2 DR1 D isters D ar	Calls the subroutine a Ro A3 A2 A1 A0)2 spec nd A in page p.
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		address (D fied by reg p is 0 to 1	broutine : R2 DR1 D isters D ar 5 for M345	Calls the subroutine a Ro A3 A2 A1 A0)2 spec nd A in page p.
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	Description	address (D fied by reg p is 0 to 1: for M34506	broutine : DR2 DR1 DI isters D ar 5 for M345 M4/E4.	Calls the subroutine a Ro A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	Description	address (D fied by reg p is 0 to 1s for M34506 Be careful	broutine: 0R2 DR1 Disters D ar 5 for M345 M4/E4. not to over	Calls the subroutine a Ro A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3 r the stack because th
	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description	address (D fied by reg p is 0 to 1s for M34506 Be careful	broutine: 0R2 DR1 Disters D ar 5 for M345 M4/E4. not to over	Calls the subroutine a Ro A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3
CLD (CLea	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description Note:	address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I	broutine: bR2 DR1 Disters D ar for M345 M4/E4. not to over	Calls the subroutine at R0 A3 A2 A1 A0)2 spect and A in page p. 506M2, and p is 0 to 3 at the stack because the routine nesting is 8.
CLD (CLea	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ ar port D) D9 D0	Description	address (D fied by reg p is 0 to 1s for M34506 Be careful	broutine: 0R2 DR1 Disters D ar 5 for M345 M4/E4. not to over	Calls the subroutine a Ro A3 A2 A1 A0)2 spec ad A in page p. 506M2, and p is 0 to 3 r the stack because th
CLD (CLea	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:	address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I	broutine: bR2 DR1 Disters D ar for M345 M4/E4. not to over	Calls the subroutine at R0 A3 A2 A1 A0)2 spect and A in page p. 506M2, and p is 0 to 3 at the stack because the routine nesting is 8.
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words	address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles	broutine: DR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub	Calls the subroutine of Ro A3 A2 A1 A0)2 spectod A in page p. 506M2, and p is 0 to 3 or the stack because the proutine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ ar port D) D9 D0	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine a R0 A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3 r the stack because the routine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine a R0 A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3 r the stack because the routine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine at Ro A3 A2 A1 A0)2 spect and A in page p. 506M2, and p is 0 to 3 at the stack because the routine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine of Ro A3 A2 A1 A0)2 spectod A in page p. 506M2, and p is 0 to 3 or the stack because the proutine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine at Ro A3 A2 A1 A0)2 spect and A in page p. 506M2, and p is 0 to 3 at the stack because the routine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine of Ro A3 A2 A1 A0)2 spectod A in page p. 506M2, and p is 0 to 3 or the stack because the proutine nesting is 8. Skip condition
CLD (CLea Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ Par port D) D9 D0 0 0 0 0 0 1 0 0 0 1 2 0 1 1 1 16	Note: Number of words 1 Grouping:	c Call the su address (E fied by reg p is 0 to 1: for M34506 Be careful maximum I Number of cycles 1	broutine: PR2 DR1 Disters D ar for M345 M4/E4. not to over evel of sub Flag CY ut operation	Calls the subroutine R0 A3 A2 A1 A0)2 spec nd A in page p. 506M2, and p is 0 to 3 r the stack because the routine nesting is 8. Skip condition

	Iplement of Accumulator)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 0 ₂ 0 1 C ₁₆	1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
operation.	(1) \ (1)			-	mplement for registe
		Description	A's conten		-
CMCK (Cld	ock select: ceraMic resonance ClocK)				
Instruction code	D9 D0 1 0 0 1 1 0 1 0 2 9 A 46	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1	1	1	_	-
Operation:	Ceramic resonance circuit selected	Grouping:	Other oper	ration	
		Description	stops the c		resonance circuit and cillator.
CRCK (Clo	ock select: Rc oscillation ClocK)				
	,		Niahaanaf	Flag CY	01.1
Instruction	D9 D0	Number of	Number of	i lag o i	Skip condition
Instruction code	D9 D0 1 0 1 0 0 1 1 0 1 1 2 2 9 B 16	Number of words	cycles	- mag 0 1	Skip condition -
code	1 0 1 0 0 1 1 0 1 1 2 9 B	words 1 Grouping:	cycles 1 Other oper	- ration	_
code	1 0 1 0 0 1 1 0 1 1 ₂ 2 9 B ₁₆	words 1 Grouping:	Other oper	ration e RC oscil	ation circuit and stops
	1 0 1 0 0 1 1 0 1 1 ₂ 2 9 B ₁₆	words 1 Grouping:	cycles 1 Other oper	ration e RC oscil	ation circuit and stops
code	1 0 1 0 0 1 1 0 1 1 ₂ 2 9 B ₁₆	words 1 Grouping:	Other oper	ration e RC oscil	ation circuit and stops
code	1 0 1 0 0 1 1 0 1 1 ₂ 2 9 B ₁₆	words 1 Grouping:	Other oper	ration e RC oscil	ation circuit and stops
Code Operation:	1 0 1 0 1 1 0 1	words 1 Grouping:	Other oper	ration e RC oscil	ation circuit and stops
Code Operation: DEY (DEcr	RC oscillation circuit selected rement register Y)	words 1 Grouping: Description	Other oper Selects the the on-chip	ration e RC oscil o oscillator	- lation circuit and stops
Code Operation: DEY (DEcr	Tement register Y D9	words 1 Grouping:	Other oper	ration e RC oscil	ation circuit and stops
Operation: DEY (DEcr	1 0 1 0 1 1 0 1	words 1 Grouping: Description	Other oper Selects the the on-chip	ration e RC oscil o oscillator	- lation circuit and stops
Operation: DEY (DEcr Instruction code	Tement register Y D9	words 1 Grouping: Description Number of words	Other oper Selects the the on-chip	ration e RC oscillator coscillator Flag CY	ation circuit and stop
Operation: DEY (DEcr Instruction code	Tement register Y) D9 D0 0 0 0 0 0 1 0 1 1 1 2 0 1 7 16	words 1 Grouping: Description Number of words 1	Other oper Selects the the on-chip Number of cycles 1 RAM addre	Flag CY	ation circuit and stop
Operation: DEY (DEcr Instruction code	Tement register Y) D9 D0 0 0 0 0 0 1 0 1 1 1 2 0 1 7 16	words 1 Grouping: Description Number of words 1 Grouping:	Other oper Selects the the on-chip Number of cycles 1 RAM address Subtracts As a resul	Flag CY esses 1 from the lt of subtra	Skip condition (Y) = 15 contents of register \(\) action, when the cor
Operation: DEY (DEcr Instruction code	Tement register Y) D9 D0 0 0 0 0 0 1 0 1 1 1 2 0 1 7 16	words 1 Grouping: Description Number of words 1 Grouping:	Other oper Selects the the on-chip Number of cycles 1 RAM addre Subtracts As a resultents of regimes	Flag CY esses 1 from the lt of subtragister Y is	Skip condition (Y) = 15 contents of register vaction, when the cor 15, the next instruction
Operation: DEY (DEcr Instruction	Tement register Y) D9 D0 0 0 0 0 0 1 0 1 1 1 2 0 1 7 16	words 1 Grouping: Description Number of words 1 Grouping:	Number of cycles 1 Number of cycles 1 RAM address As a resultents of regis skipped.	Flag CY esses 1 from the lit of subtragister Y is. When the	Skip condition (Y) = 15 contents of register vaction, when the cordition to the condition of the condition of the contents of register vaction.
Operation: DEY (DEcr Instruction code	Tement register Y) D9 D0 0 0 0 0 0 1 0 1 1 1 2 0 1 7 16	words 1 Grouping: Description Number of words 1 Grouping:	Number of cycles 1 Number of cycles 1 RAM address As a resultents of regis skipped.	Flag CY esses 1 from the lit of subtragister Y is. When the	Skip condition (Y) = 15 contents of register vaction, when the cor 15, the next instruction

DI (Disable	e Interrupt)				
Instruction	D9 D0 0 0 0 0 0 1 0 0 0 0 4 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 0 0 2	1	1	_	-
Operation:	$(INTE) \leftarrow 0$	Grouping:	Interrupt co	ontrol oper	ation
		Description	: Clears (0)	to interrup	t enable flag INTE, and
			disables th		
		Note:			by executing the DI in-
			struction a	ner execui	ing 1 machine cycle.
DWDT (Dis	sable WatchDog Timer)			1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 ₂ 2 9 C ₁₆	1	1	_	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation	
Operation.	Stop of waterlady time function chapter				timer function by the
				-	after executing the
			DWDT inst	truction.	
EI (Enable	Interrupt)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 1 2 0 0 5	words 1	cycles 1	_	_
Operation:	(INTE) ← 1	Grouping:	Interrupt co	ontrol oper	ation
	()	Description			enable flag INTE, and
			enables the	e interrupt	
		Note:	•		by executing the EI in-
			struction a	fter execut	ing 1 machine cycle.
EPOF (Ena	able POF instruction)				
Instruction code	D9 D0 0 0 1 0 1 1 0 1 1 0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	POF2 instruction valid	Grouping:	Other oper	ation	<u> </u>
ореганоп.	1 Of 2 Histraction valid		: Makes the	immedia	te after POF or POF2 xecuting the EPOF in-

IAK (Input	Accumulator from port K)				
Instruction code	D9 D0 1 1 0 1 1 1 1 2 2 6 F 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(A ₀) ← (K)	Grouping:	Input/Outp		
	(A3–A1) ← 0	Description Note:	(A ₀) of reg	ister A. instructio	ts of port K to the bit (in is executed, "0" is rder 3 bits (A3-A1) o
IAP0 (Inpu	t Accumulator from port P0)				
Instruction code	D9 D0 1 1 0 0 0 0 0 0 2 6 0 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (P0)	Grouping:	Input/Outp	ut operatio	n
IAP1 (Innu	t Accumulator from port P1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 1 2 2 6 1 16	words	cycles 1	-	
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut oneratio	n
		Description	ı: Transfers t	he input of	port P1 to register A.
IAP2 (Inpu	t Accumulator from port P2)				
Instruction code	D9 D0 1 1 0 0 0 1 0 2 6 2 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A1, A0) ← (P21, P20)	Grouping:	Input/Outp	ut operatio	n
	(A3, A2) ← 0	Description Note:	der 2 bits (After this	A1, A0) of instructio	f port P2 to the low-or register A. n is executed, "0" is rder 2 bits (A3, A2) o

	ment register Y)		Nime	Ni. mali a mark	Flat OV	012 194
Instruction code	D9 D0 0 0 0 1 0 0 1 1 3		Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(Y) = 0
Operation:	(Y) ← (Y) + 1		Grouping:	RAM addre	esses	
			Description	sult of ac register Y skipped. W	Idition, w ' is 0, the Ihen the c	ts of register Y. As a re then the contents o e next instruction is ontents of register Y is ction is executed.
LA n (Load	In in Accumulator)					
Instruction code	D9 D0 0 0 1 1 1 1 n n n n n 0 0 7 r		Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	Continuous description
Operation:	$(A) \leftarrow n$		Grouping:	Arithmetic	operation	
	n = 0 to 15		Description	register A. When the coded and struction	LA instruc I executed is exec	the immediate field to stions are continuously d, only the first LA in- uted and other LA d continuously are
	oad register X and Y with x and y)		1		1	
Instruction code	D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y	,	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$		Grouping:	RAM addre	esses	
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$		Description	register X, field to reg tions are c only the fi	and the vagister Y. Wontinuouslerst LXY in LXY instru	the immediate field to alue y in the immediate When the LXY instruc- y coded and executed astruction is executed actions coded continu-
LZ z (Load	register Z with z)					
Instruction code	D9 D0 0 0 1 0 0 1 0 21 20 0 0 4 +	37	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 0 21 20 2 0 4 +	z ₁₆	1	1	_	-
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$		Grouping: Description	RAM address: Loads the register Z.		the immediate field to

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description Number of words		ion; Adds	Skip condition - 1 to program counter nain unchanged.
Ut port K from Accumulator) D9 D0 1 0 0 0 0 1 1 1 1 1 2 1 F	1 Grouping: Description	Other operativalue, and	ration ion; Adds	1 to program counter
Ut port K from Accumulator) D9 D0 1 0 0 0 0 1 1 1 1 1 2 1 F	Grouping: Description	Other oper No operat value, and	ration ion; Adds	1 to program counter
ut port K from Accumulator) D9 D0	Description Number of	: No operat value, and	ion; Adds	
ut port K from Accumulator) D9 D0	Description Number of	: No operat value, and	ion; Adds	
D9 D0	Number of	value, and		
D9 D0		Number of		
D9 D0		Number of		
1 0 0 0 1 1 1 1 1 2 1 F			Flag CY	Skip condition
10		cycles	9	
	1	1	_	_
$(K) \leftarrow (A_0)$	Grouping:	Input/Outp	ut operatio	on
		: Outputs th	e contents	of bit 0 (A ₀) of register
put port P0 from Accumulator)				
D9 D0	Number of		Flag CY	Skip condition
1 0 0 0 1 0 0 0 0 0 0 2 2 2 0 16	1	1	_	_
(P0) ← (A)	Grouping:	Input/Outp	ut operatio	วท
	Description	: Outputs th	ne content	s of register A to port
		P0.		
		1		
	Number of words	Number of cycles	Flag CY	Skip condition
16	1	1	-	_
(P1) ← (A)	Grouping:	Input/Outp	ut operatio	on
			<u> </u>	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	put port P0 from Accumulator) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Description: Outputs the contents

OP2A (Out	tput port P2 from Accumulator)	•	<u>, </u>		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 0 0 1 0 2 2 2 2 16	1	1	_	-
Operation:	(P21, P20) ← (A1, A0)	Grouping:	Input/Outp	ut operatio	on
·		Description		e contents	of the low-order 2 bits
OR (logical	I OR between accumulator and memory)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	_	-
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
		Description			tion between the con-
POF2 (Pov	ver OFf2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 8	words	cycles	l lag C1	Skip condition
		1	1	_	-
Operation:	RAM back-up	Grouping:	Other oper	ation	
		Description Note:	executing ecuting the all function If the EPOF	the POF2 EPOF ins s are stop instruction this instruct	n is not executed before etion, this instruction is
RAR (Rota	te Accumulator Right)				
Instruction code	D9 D0 0 0 0 1 1 1 0 1 0 1 D 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	0/1	_
Operation:	→CY→A3A2A1A0	Grouping: Description		oit of the co	ontents of register A in- of carry flag CY to the

RB j (Rese	at Rit\				
Instruction	D9 D0 0 0 0 1 0 0 1 1 j j 2 0 4 C +j 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $	Grouping: Description		the conter	ats of bit j (bit specified e immediate field) o
RC (Reset	Carry flag)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	0	-
Operation:	(CY) ← 0	Grouping: Description	Arithmetic (Clears (0) t		g CY.
RCP (Rese	Pet Port C) D9 D0 1 0 1 0 0 0 1 1 0 0 0 2 2 8 C 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(C) ← 0	Grouping:	Input/Outp	ut operation	n
RD (Reset	port D specified by register Y) D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 0 2 0 1 4	words	cycles	- iag C1	·
Operation:	$(D(Y)) \leftarrow 0$ However, (Y) = 0 to 3	Grouping: Description Note:	Input/Outp : Clears (0) to Set 0 to 3 four ports (When valu	ut operation of a bit of portion register (D0–D3).	n t D specified by register Y. r Y because port D is above are set to regis- n is equivalent to the

	n from subroutine)	(001111111			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
0000	0 0 0 1 0 0 1 0 0 0 1 0 0 2 0 4 4 16	1	2	_	_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$	Description			outine to the routine
			called the	subroutine	
RTI (ReTur	rn from Interrupt)	<u> </u>			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 1 0 2 0 4 6	1	1	_	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$				upt service routine to
			main routir		
					f data pointer (X, Y, Z),
					s, NOP mode status by
					ption of the LA/LXY in-
			struction, states just	-	and register B to the errupt.
RTS (ReTu	ırn from subroutine and Skip)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 1 2 0 4 5	1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$	Description	: Returns f	rom subr	outine to the routine
			called the s		, and skips the next in- on.
SB j (Set B	Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on .	
·	j = 0 to 3				of bit j (bit specified by lediate field) of M(DP).

	4 \				
SC (Set Ca					
Instruction code	D9 D0 0 0 0 0 0 1 1 1 0 0 7 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	1	_
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
		Description	: Sets (1) to	carry flag	CY.
SCP (Set F	Port C)				
Instruction	D9 D0 1 0 0 0 1 1 0 1 2 8 D 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	(C) ← 1	Grouping:	Input/Outp	ut operatio	on
·			: Sets (1) to		
SD (Set po	ort D specified by register Y) D9 D0 0 0 0 0 0 1 0 1 0 1 2 0 1 5 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp		
	(Y) = 0 to 3	Description: Sets (1) to a bit of port D specified by register Y. Note: Set 0 to 3 to register Y because port D is four ports (Do–D3). When values except above are set to register Y, this instruction is equivalent to the NOP instruction.			
SEA n (Sk	ip Equal, Accumulator with immediate data n)				
Instruction	D9 D0 0 0 0 1 0 0 1 0 1 0 2 5 16	Number of words	Number of cycles	Flag CY	Skip condition
-		2	2	_	(A) = n
	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso	n operatio	n
Operation:	(A) = n? n = 0 to 15	Description	tents of rec the immed Executes t	gister A is iate field. he next ins gister A is r	uction when the con- equal to the value n in struction when the con- not equal to the value n

4506 Group INSTRUCTIONS

SEAM (Ski	p Equal, Accumulator with Memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 1 0 2 0 2 6	words 1	cycles 1	_	(A) = (M(DP))
•	(A) (A)(DD)) 0				
Operation:	(A) = (M(DP))?	Grouping:	Compariso		
		Description	tents of reg M(DP). Executes t	gister A is e he next ins egister A	uction when the contequal to the contents of struction when the corticle is not equal to the
SNZ0 (Skip	if Non Zero condition of external 0 interrupt reques	t flag)			
Instruction code	D9 D0 0 0 1 1 1 0 0 0 0 3 8	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 0 0 0 2 0 0 16	1	1	_	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt of	peration	
	After skipping, $(EXF0) \leftarrow 0$ V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Description: When V10 = 0 : Skips the next instrument when external 0 interrupt request flag is "1." After skipping, clears (0) to the flag. When the EXF0 flag is "0," exerthe next instruction. When V10 = 1 : This instruction is explent to the NOP instruction.			
SNZAD (SI	kip if Non Zero condition of A/D conversion completi	on flag)			
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	V22 = 0: (ADF) = 1
Operation:	V22 = 0: (ADF) = 1 ?	Grouping:	A/D conve	rsion oper	ation
	After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2)	Description	when A/D is "1." Afte flag. When next instru	conversion skipping the ADF foction.	os the next instruction of completion flag ADF, clears (0) to the ADF lag is "0," executes the instruction is equivaluction.
SNZCP (SI	kip if Non Zero condition of Port C)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 0 0 1 0 0 1 2 2 8 9 16	1	1	_	(C) = 1
Operation:	(C) = 1 ?	Grouping: Description	tents of po	next instr ort C is "1." the next ins	on uction when the con struction when the con

4506 Group INSTRUCTIONS

	p if Non Zero condition of external 0 Interrupt input				
Instruction code	D9 D0 D0 0 0 1 1 1 0 1 0 2 0 3 A 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 0 1 0 ₂ 0 3 A ₁₆	1	1	_	I12 = 0 : (INT) = "L" I12 = 1 : (INT) = "H"
Operation:	I12 = 0 : (INT) = "L" ?	Grouping:	Interrupt of		
	I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Description	when the I the next ir pin is "H." When I12 when the I	level of IN estruction = 1 : Skip evel of IN	os the next instruction IT pin is "L." Executes when the level of IN os the next instruction T pin is "H." Executes when the level of IN
SNZP (Skir	o if Non Zero condition of Power down flag)		p 2.		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(P) = 1
Operation:	(P) = 1 ?	Grouping:	Other oper	ation	
		Description	: Skips the r	next instru	ction when the P flag is
			After skip	ping, the	P flag remains un
			changed.		
			Executes flag is "0."	the next i	nstruction when the F
	ip if Non Zero condition of Timer 1 interrupt request		1	I	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 0 0 0 2 2 8 0 16	1	1	_	V12 = 0: (T1F) = 1
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer oper	ation	
орегиноп.	After skipping, $(T1F) \leftarrow 0$				ps the next instruction
	V12 = 1: SNZT1 = NOP				pt request flag T1F is
	(V12 = bit 2 of interrupt control register V1)		"1." After	skipping,	clears (0) to the T1F
			-		lag is "0," executes the
			next instru		
				= 1 : This	s instruction is equiva- uction.
			ichi to the		
SNZT2 (Sk	ip if Non Zero condition of Timer 2 interrupt request	lag)	icht to the		
Instruction	D9 D0	flag) Number of words	Number of cycles	Flag CY	Skip condition
		Number of	Number of	Flag CY	Skip condition V13 = 0: (T2F) = 1
Instruction code	D9 D0 1 0 0 0 0 0 1 2 8 1	Number of words	Number of cycles	_	·
Instruction code	D9 D0	Number of words	Number of cycles 1 Timer oper : When V13	- ration = 0 : Ski	V13 = 0: (T2F) = 1
Instruction	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Number of cycles 1 Timer oper When V13 when time	ration = 0 : Skip	V13 = 0: (T2F) = 1 ps the next instruction pt request flag T2F is
Instruction code	D9 D0	Number of words 1 Grouping:	Number of cycles 1 Timer oper : When V13 when time "1." After	ration = 0 : Skipr 2 interruskipping,	V13 = 0: (T2F) = 1 ps the next instruction upt request flag T2F is clears (0) to the T2F
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Number of cycles 1 Timer oper : When V13 when time "1." After	ration = 0 : Skipr 2 interruskipping,	V13 = 0: (T2F) = 1

	`				
SZB j (Skip	o if Zero, Bit)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ooue	0 0 0 0 1 0 0 1 0 0 0 j j 2 0 2 j 16	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?	Grouping:	Bit operation	on .	,
	j = 0 to 3		: Skips the tents of bit the immed	next instr t j (bit spe iate field) d he next ins	uction when the con cified by the value j ir of M(DP) is "0." struction when the con) is "1."
SZC (Skip	if Zero, Carry flag)				
Instruction code	D9 D0 0 0 1 0 1 1 1 1 0 2 F	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(CY) = 0
Operation:	(CY) = 0?	Grouping:	Arithmetic	operation	
		Description	: Skips the	next instr	uction when the con-
			tents of ca	, ,	
			•	ping, the	CY flag remains un
			changed.	ha navet inc	atrijatian juhan tha aan
			tents of the		struction when the con- s "1."
	if Zero, port D specified by register Y)			ı	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1	2	2	_	(D(Y)) = 0
	0 0 0 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆				(Y) = 0 to 3
Operation:	(D(Y)) = 0?	Grouping:	Input/Outp		
Ореганоп.	(Y) = 0 to 3	Description			ction when a bit of por
					er Y is "0." Executes the the bit is "1."
		Note:	Set 0 to 3	to registe	er Y because port D i
			four ports ((D0–D3). es excent	above are set to regis
			ter Y, this	instructio	n is equivalent to the
			NOP instru	iction.	
	nsfer data to timer 1 and register R1 from Accumula	_		ı	
Instruction code	D9 D0 1 0 0 0 1 1 0 0 0 0 2 3 0 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
			T	ation	
Operation:	(T17–T14) ← (B)	Grouping:	Timer oper	allon	
Operation:	$(T17-T14) \leftarrow (B)$ $(R17-R14) \leftarrow (B)$				nts of register B to the
Operation:			: Transfers	the conter	-
Operation:	$(R17-R14) \leftarrow (B)$: Transfers high-order load regist	the conter 4 bits of ter R1. Tra	imer 1 and timer 1 re-
Operation:	$(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$: Transfers high-order load regist register A	the conter 4 bits of t er R1. Tra to the low	imer 1 and timer 1 reamsfers the contents of order 4 bits of timer 1
Operation:	$(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$: Transfers high-order load regist	the conter 4 bits of t er R1. Tra to the low	nts of register B to the rimer 1 and timer 1 re- unsfers the contents of order 4 bits of timer 1 gister R1.
Operation:	$(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$: Transfers high-order load regist register A	the conter 4 bits of t er R1. Tra to the low	imer 1 and timer 1 re- insfers the contents of order 4 bits of timer 1

	nsfer data to timer 2 and register R2 from Accumula			FI 63.1	011 ""
Instruction code	D9 D0 1 0 0 1 1 0 0 0 1 2 3 1 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(T27-T24) \leftarrow (B)$	Grouping:	Timer oper	ration	
	$(R27-R24) \leftarrow (B)$	Description	: Transfers	the conten	ts of register B to the
	(T23−T20) ← (A)		high-order	4 bits of t	mer 2 and timer 2 re
	$(R23-R20) \leftarrow (A)$		_		nsfers the contents o
			register A		order 4 bits of timer gister R2.
	sfer data to Accumulator from register B)		1		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(A) ← (B)	Grouping:	Other oper	ation	
		Description	: Transfers t	the content	s of register B to reg
TAB1 (Trai	nsfer data to Accumulator and register B from timer	1)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 0 2 2 7 0	words 1	cycles 1	_	
		1	l I	_	
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper		
	$(A) \leftarrow (T13-T10)$	Description		_	der 4 bits (T17-T14) c
			timer 1 to 1	-	lan 4 bita (T4a T4a) a
			timer 1 to		der 4 bits (T13–T10) c
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)			
Instruction code	D9 D0 1 1 1 1 0 0 0 1 2 7 1 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
	(B) ← (T27–T24)	Grouping:	Timer ope	ration	
Operation:	(D) \ (121 124)		: Transfers		

	ansfer data to Accumulator and register B from regi	ster AD)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 1 0 0 1 1 2 7 9 16	words 1	cycles 1	_	_
		0	A /D		4:
Operation:	In A/D conversion mode (Q13 = 0),	Grouping: Description	A/D conve	•	mode (Q13 = 0), trans
	$(B) \leftarrow (AD - AD e)$	Description			its (AD9–AD6) of registe
	$(A) \leftarrow (AD5-AD2)$		_		the middle-order 4 bit
	In comparator mode (Q13 = 1), $(R) = (AR - AR)$		_		AD to register A. In the
	$(B) \leftarrow (AD7-AD4)$, ,	-	3 = 1), transfers the high
	$(A) \leftarrow (AD3-AD0)$				of comparator registe
	(Q13 : bit 3 of A/D control register Q1)				low-order 4 bits (AD3-
			AD ₀) of con	nparator re	gister to register A.
TABE (Trai	nsfer data to Accumulator and register B from regist	er E)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 2 0 2 A	words	cycles		
	0 0 0 0 1 0 1 0 1 0 2 0 2 1 16	1	1	_	_
Operation:	$(B) \leftarrow (E7 – E4)$	Grouping:	Register to	register ti	ransfer
	$(A) \leftarrow (E3-E0)$	Description		_	order 4 bits (E7-E4) of
			register E	to register	B, and low-order 4 bits
			of register	E to regist	er A.
TABP p (Ti	ransfer data to Accumulator and register B from Pro	⊥ gram mem	ory in page	p)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 0 p4 p3 p2 p1 p0 2 0 8 p	words	cycles		
	0 0 1 0 0 p4 p3 p2 p1 p0 0 +n p 10				
	0 0 1 0 0 p4 p3 p2 p1 p0 2 0 +p p 16	1	3	_	_
				- operation	_
Operation:	(SP) ← (SP) + 1	1 Grouping: Description	Arithmetic		– o register B and bits 3 t
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$	Grouping:	Arithmetic Transfers b 0 to registe	oits 7 to 4 to er A. These	bits 7 to 0 are the ROM
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	Grouping:	Arithmetic : Transfers b 0 to registe pattern in	oits 7 to 4 to er A. These address ([bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Grouping: Description	Arithmetic Transfers to to registed pattern in A0)2 specification.	oits 7 to 4 to er A. These address (I died by regis	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p.
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$	Grouping:	Arithmetic Transfers to 0 to registe pattern in A0)2 specif p is 0 to 15	oits 7 to 4 to er A. These address (I ded by regis of for M345	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p.
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$	Grouping: Description	Arithmetic Transfers to 0 to registe pattern in A0)2 specific p is 0 to 15 for M34500	oits 7 to 4 to er A. These address (I ded by regis of for M345 6M4/E4.	o register B and bits 3 to bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3
Operation:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$	Grouping: Description	Arithmetic Transfers b 0 to registe pattern in A0)2 specif p is 0 to 19 for M34500 When this not to ove	oits 7 to 4 to er A. These address (I ed by regis 5 for M345 6M4/E4. instruction er the stace	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	Arithmetic Transfers b 0 to registe pattern in A0)2 specif p is 0 to 19 for M34500 When this	oits 7 to 4 to er A. These address (I ed by regis 5 for M345 6M4/E4. instruction er the stace	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$	Grouping: Description	Arithmetic Transfers b 0 to registe pattern in A0)2 specif p is 0 to 19 for M34500 When this not to ove	oits 7 to 4 to er A. These address (I ed by regis 5 for M345 6M4/E4. instruction er the stace	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description Note:	Arithmetic Transfers to to registe pattern in A0)2 specific p is 0 to 19 for M34500 When this not to ove stack regis Number of	oits 7 to 4 to er A. These address (I ed by regis 5 for M345 6M4/E4. instruction er the stace	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
TAD (Trans	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ Sfer data to Accumulator from register D)	Grouping: Description Note:	Arithmetic Transfers to to registe pattern in A0)2 specific p is 0 to 19 for M34500 When this not to ove stack regis	oits 7 to 4 to er A. These address (I ded by regis of for M345 of M4/E4. instruction er the stac ter is used	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
TAD (Trans	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ $(B) \leftarrow (ROM(PC))_{7-4}$ $(A) \leftarrow (ROM(PC))_{3-0}$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ Sefer data to Accumulator from register D) D_0	Grouping: Description Note:	Arithmetic Transfers to to registe pattern in A0)2 specific p is 0 to 19 for M34500 When this not to ove stack regis Number of	oits 7 to 4 to er A. These address (I ded by regis of for M345 of M4/E4. instruction er the stac ter is used	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 is executed, be carefuck because 1 stage of
TAD (Trans Instruction code	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$ Sfer data to Accumulator from register D)	Grouping: Description Note: Number of words	Arithmetic Transfers b 0 to registe pattern in A0)2 specif p is 0 to 19 for M34500 When this not to ove stack regis Number of cycles	oits 7 to 4 to a r A. These address (I ded by regis 5 for M345 6M4/E4. instruction for the stacter is used	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 a is executed, be careful k because 1 stage of
TAD (Trans Instruction code	$\begin{array}{c} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p \\ (\text{PCL}) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0, \text{A}_3 \text{-} \text{A}_0) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))_{7-4} \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))_{3-0} \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \\ \\ \hline \text{Sfer data to Accumulator from register D} \\ \hline D_9 & D_0 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline \end{array}$	Grouping: Description Note: Number of words 1 Grouping:	Arithmetic Transfers to 0 to registe pattern in A0)2 specific p is 0 to 15 for M34500 When this not to ove stack regis Number of cycles 1 Register to	oits 7 to 4 to a r A. These address (I ded by registor M345 6M4/E4. instruction for the stacter is used Flag CY	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 506M2, and p is 0 to 3 a is executed, be careful k because 1 stage of
TAD (Trans Instruction code	$\begin{array}{c} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p \\ (\text{PCL}) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0, \text{A}_3 \text{-} \text{A}_0) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))_{7-4} \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))_{3-0} \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \\ \\ \hline \text{Sfer data to Accumulator from register D} \\ \hline D_9 & D_0 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline (\text{A}_2 \text{-} \text{A}_0) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0) \\ \hline \end{array}$	Grouping: Description Note: Number of words 1 Grouping:	Arithmetic Transfers to 0 to register pattern in A0)2 specific p is 0 to 15 for M34500 When this not to overstack regis Number of cycles 1 Register to 1: Transfers	ists 7 to 4 to a far A. These address (I fed by register the stacker is used) Flag CY register to the content th	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 606M2, and p is 0 to 3 a is executed, be careful ck because 1 stage of d. Skip condition
Instruction	$\begin{array}{c} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p \\ (\text{PCL}) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0, \text{A}_3 \text{-} \text{A}_0) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))_{7-4} \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))_{3-0} \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \\ \\ \hline \text{Sfer data to Accumulator from register D} \\ \hline D_9 & D_0 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline (\text{A}_2 \text{-} \text{A}_0) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0) \\ \hline \end{array}$	Grouping: Description Note: Number of words 1 Grouping:	Arithmetic Arithmetic Transfers to 0 to registe pattern in A0)2 specif p is 0 to 1! for M34500 When this not to ove stack regis Number of cycles 1 Register to 1: Transfers low-order is When this	ists 7 to 4 to a far A. These address (I fed by regists for M345 f	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 606M2, and p is 0 to 3 a is executed, be careful ck because 1 stage of d. Skip condition - ransfer nts of register D to the
TAD (Trans Instruction code	$\begin{array}{c} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p \\ (\text{PCL}) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0, \text{A}_3 \text{-} \text{A}_0) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))_{7-4} \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))_{3-0} \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 \\ \\ \hline \text{Sfer data to Accumulator from register D} \\ \hline D_9 & D_0 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline (\text{A}_2 \text{-} \text{A}_0) \leftarrow (\text{DR}_2 \text{-} \text{DR}_0) \\ \hline \end{array}$	Note: Number of words 1 Grouping: Description	Arithmetic Arithmetic Transfers to 0 to registe pattern in A0)2 specif p is 0 to 1! for M34500 When this not to ove stack regis Number of cycles 1 Register to 1: Transfers low-order is When this	ists 7 to 4 to a far A. These address (I fed by regists for M345 f	bits 7 to 0 are the RO DR2 DR1 DR0 A3 A2 A sters A and D in page p 506M2, and p is 0 to 3 his executed, be caref ck because 1 stage of h. Skip condition - ransfer hts of register D to the A0) of register A. on is executed, "0" is

	ransfer data to re	gister Al	D from		ımul	ator f	rom re	, , , , , , , , , , , , , , , , , , ,	T		
Instruction code	D9 1 0 0 0 1	1 1	0 0	D ₀		2 3	9 16	Number of words	Number of cycles	Flag CY	Skip condition
			1 0 1	<u> </u>	12 L	. 0	16	1	1	_	-
Operation:	(AD7–AD4) ← (B)							Grouping:	A/D conve		
орогино	$(AD3-AD0) \leftarrow (A)$							Description			mode (Q13 = 0), this in
	, , ,										to the NOP instruction ode (Q13 = 1), trans
									fers the	contents	of register B to th
									high-order	4 bits (AD	7-AD4) of comparate
										ntents of register A t	
									tor register		AD3-AD0) of compara
											entrol register Q1)
TAI1 (Trans	sfer data to Accui	mulator	from r	egiste	er [1])			,		<u> </u>
Instruction	D9			D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0	1 0	0	1 1	2	5	3 16	words 1	cycles 1	_	
									'	_	
Operation:	$(A) \leftarrow (I1)$							Grouping:	Interrupt of		
								Description			nts of interrupt contro
									register I1	to register	Α.
	nsfer data to Accu	ımulator	r from	regis	ter K	(0)				- ov	
	D-			D -				N.L			Older and differen
Instruction code	D9	T . T -	1.1	D0	l [-			Number of words	Number of cycles	Flag CY	Skip condition
	D9 1 0 0 1 0	1 0	1 '		2	5	6 16	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0	1 0	1 1		2	5	6 16	words 1	cycles 1	_	-
		1 0	1 /		2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp	- ut operatio	_ _ n
code	1 0 0 1 0	1 0	1 /		2 2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
code	1 0 0 1 0	1 0	1 /		2 2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp	ut operatio	n nts of key-on wakeu
code	1 0 0 1 0	1 0	1 /		2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
code	1 0 0 1 0	1 0	1 .		2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
code	1 0 0 1 0	0 1 0	1 7		2 2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
code	1 0 0 1 0	0 1 0	1		2 2	5	6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
Operation:	1 0 0 1 0			1 0			6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu
Operation:	1 0 0 1 0 (A) ← (K0)			1 0			6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operatio	n nts of key-on wakeu register A.
Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description	cycles 1 Input/Outp : Transfers control reg	ut operatio the conter ister K0 to	n nts of key-on wakeu
Operation: TAK1 (Transtruction	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	umulator		regis		(1)	9 16	words 1 Grouping: Description	cycles 1 Input/Outp : Transfers control reg Number of	ut operatio the conter ister K0 to	n nts of key-on wakeu register A.
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1	cycles 1 Input/Outp : Transfers control reg Number of cycles 1	ut operation the content ister K0 to	n nts of key-on wakeu register A. Skip condition
TAK1 (Transtruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp	ut operatio the conter ister K0 to	nnts of key-on wakeupregister A. Skip condition
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nts of key-on wakeu register A. Skip condition - nts of key-on wakeu
Operation: TAK1 (Transfunction	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp : Transfers	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nts of key-on wakeu register A. Skip condition - nts of key-on wakeu
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp : Transfers	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nnts of key-on wakeup register A. Skip condition nnts of key-on wakeup
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp : Transfers	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nnts of key-on wakeup register A. Skip condition nnts of key-on wakeup
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp : Transfers	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nnts of key-on wakeup register A. Skip condition nnts of key-on wakeup
TAK1 (Transtruction code	$(A) \leftarrow (K0)$ $(A) = (K0)$ (A)	umulator	r from	regis	ter K	(1)	9	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Input/Outp : Transfers control reg Number of cycles 1 Input/Outp : Transfers	ut operatio the conter ister K0 to Flag CY ut operatio the conter	nts of key-on wakeu register A. Skip condition nts of key-on wakeu

TAK2 (Trai	nsfer data to Accumulator from register K2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
couc	1 0 0 1 0 1 1 0 1 0 ₂ 2 5 A ₁₆	1	1	-	-
Operation:	(A) ← (K2)	Grouping: Description	Input/Outpi : Transfers control reg	the conte	nts of key-on wakeup
TALA (Tra	nsfer data to Accumulator from register LA)	•			
Instruction	D9 D0 1 0 0 1 0 0 1 2 4 9 45	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 0 1 0 0 1 2 2 4 3 16	1	1	_	-
Operation:	(A3, A2) ← (AD1, AD0)	Grouping:	A/D conve	rsion opera	ation
·	$(A_1, A_0) \leftarrow 0$		register AE of register After this	the low-ord to the hig A. instructio	der 2 bits (AD1, AD0) of gh-order 2 bits (A3, A2) on is executed, "0" is order 2 bits (A1, A0) of
	nsfer data to Accumulator from Memory)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 1 0 0 j j j j ₂ 2 C _{j 16}	1	1	_	-
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to re	gister trans	sfer
·	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15		: After trans register A performed	sferring the , an exclu between r mediate fi	e contents of M(DP) to usive OR operation is egister X and the value eld, and stores the re-
TAMR (Tra	nsfer data to Accumulator from register MR)				
Instruction	D9 D0 1 0 0 1 0 1 0 0 1 0 2 5 2 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (MR)	Grouping: Description	Other oper Transfers to ister MR to	the conten	ts of clock control reg-

	asfor data to Assumulator from register (1)				
IAQ1 (Training Instruction	nsfer data to Accumulator from register Q1)	Number of	Number of	Flor CV	Chin condition
code	D9 D0	words	cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 0 1 0 0 1 0 0 2 2 4 4 4 16	1	1	_	-
Operation:	(A) ← (Q1)	Grouping:	A/D conve	rsion opera	ation
					ts of A/D control regis-
			ter Q1 to re	egister A.	
TASP (Tran	nsfer data to Accumulator from Stack Pointer)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oouc	0 0 0 1 0 1 0 1 0 0 0 0 0 1 2 0 5 0 16	1	1	_	_
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
- 64. 200	$(A3) \leftarrow 0$				s of stack pointer (SP)
			to the low-	order 3 bits	s (A2-A0) of register A.
		Note:			n is executed, "0" is
			stored to the	ne bit 3 (Aa	s) of register A.
	a la a A la a de la seas				
	sfer data to Accumulator from register V1)	1		- ov	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		Number of words	Number of cycles	Flag CY	Skip condition
Instruction code	D9	words 1	cycles 1	_	
Instruction	D9 D0	words 1 Grouping:	cycles 1 Interrupt or	– peration	<u> </u>
Instruction code	D9	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	ts of interrupt control
Instruction code	D9	words 1 Grouping:	cycles 1 Interrupt or	eration	- uts of interrupt control
Instruction code	D9	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	- uts of interrupt control
Instruction code	D9	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	ts of interrupt control
Instruction code	D9	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	- uts of interrupt control
Instruction code Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	- uts of interrupt control
Instruction code Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description	cycles 1 Interrupt op Transfers register V1	eration the content to register	ts of interrupt control
Instruction code Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	cycles 1 Interrupt of Transfers	eration	- uts of interrupt control
Instruction code Operation: TAV2 (Transtruction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description	Interrupt op: Transfers register V1 Number of	eration the content to register	ts of interrupt control
Instruction code Operation: TAV2 (Transtruction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words	Interrupt op: Transfers register V1 Number of cycles	eration the content to register	ts of interrupt control A.
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op: Transfers register V1	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op: Transfers register V1	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op: Transfers register V1	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op: Transfers register V1	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control
Instruction code Operation: TAV2 (Transfirstruction code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1 Grouping:	Interrupt op: Transfers register V1 Number of cycles 1 Interrupt op: Transfers register V1	Peration the content to register Flag CY Peration the content the	sts of interrupt control A. Skip condition — ats of interrupt control

TAW1 /Tro	insfer data to Accumulator from register W1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 ₂ 2 4 B ₁₆	1	1	_	_
Operation:	(A) ← (W1)	Grouping: Description	Timer oper Transfers to ister W1 to	the conten	ts of timer control reg-
TAW2 (Tra	Insfer data to Accumulator from register W2)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (W2)	Grouping: Description	Timer oper Transfers ister W2 to	the conten	ts of timer control reg-
	Insfer data to Accumulator from register W6)	Niverband	Ni h	FI 0 V	Olim and differen
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(A) ← (W6)	Grouping: Description	Timer oper Transfers ister W6 to	the conten	ts of timer control reg-
TAX (Trans	sfer data to Accumulator from register X)				
Instruction code	D9 D0 0 0 0 1 0 1 0 0 1 0 0 5 2 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 2 0 0 2 16	1	1	-	-
Operation:	$(A) \leftarrow (X)$	Grouping: Description	Register to Transfers ister A.		ansfer ts of register X to reg-

IAT (Tans	fer data to Accumulator from register Y)				
Instruction code	D9 D0 0 0 1 1 1 1 1 1 0 0 1 F 4	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to	register tr	ansfer
		Description	: Transfers t	he content	s of register Y to regis
			ter A.		
TAZ (Trans	sfer data to Accumulator from register Z)				
Instruction code	D9 D0 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(A1,A0) \leftarrow (Z1,Z0)$	Grouping:	Register to	register tr	ansfer
	$(A3, A2) \leftarrow 0$	Description			nts of register Z to the
					Ao) of register A.
		Note:			n is executed, "0" i
				the high-o	rder 2 bits (A3, A2) o
			register A.		
TRA (Trans	sfer data to register B from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 0 0 0 E	words	cycles	linger	Orap containon
		1	1	-	-
Operation:	(B) ← (A)	Grouping:	Register to	register tr	ansfer
·		Description	: Transfers t	the content	s of register A to regis
			ter B.		
TDA (Trans	sfer data to register D from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 0 1 0 2 9	words	cycles	riag CT	Skip condition
		1	1	-	-
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping:	Register to	register tr	ansfer
					nts of the low-order 3 er A to register D.

TEAB (Tra	nsfer data to register E from Accumulator and regist	er B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 ₂ 0 1 A ₁₆	words	cycles		
	10	1	1	_	_
Operation:	(E7–E4) ← (B)	Grouping:	Register to	register tr	ansfer
	(E3–E0) ← (A)	Description	: Transfers	the conten	ts of register B to the
			high-order	4 bits (E3-	-E ₀) of register E, and
			the conten	ts of regist	er A to the low-order
			bits (E3-Ed	_	
	sfer data to register I1 from Accumulator)		Ni mala a mark	[[] OV	01: 1::
Instruction code	D9 D0 1 0 1 1 1 1 2 2 1 7 46	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 1 1 1 2 2 1 7 16	1	1	_	_
Operation:	(I1) ← (A)	Grouping:	Interrupt o	peration	
			: Transfers t	he content	s of register A to inter
			rupt contro		-
			·	Ū	
TK0A (Tra	nsfer data to register K0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 0 2 1 B	words	cycles		
		1	1	_	_
Operation:	(K0) ← (A)	Grouping:	Input/Outp	ut operatio	n
•					s of register A to key
			on wakeup		
					,
TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction	· · · · · · · · · · · · · · · · · · ·	Number of	Number of	Flag CY	Skip condition
		words	cycles	riay CT	Skip condition
code	1 0 0 0 0 1 0 1 0 0 2 2 1 4 16				
		1	1	_	_
Operation:	$(K1) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
•					s of register A to key
			on wakeup		
			oranoup	55	g:=:
		1			

TV2A /Tro	nofor data to register K2 from Accumulator)				
	nsfer data to register K2 from Accumulator)	Nivershaw of	Ni. mala a n a f	Flar CV	Oldin annulition
Instruction code	D9 D0 1 0 1 0 1 2 1 5 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers to on wakeup		ts of register A to key- gister K2.
TMA j (Tra	nsfer data to Memory from Accumulator)	•			
Instruction code	D9 D0 1 0 1 1 j j j j 2 B j 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15		to M(DP), a formed be	ferring the an exclusive tween reg ediate field	contents of register A ve OR operation is perister X and the value j d, and stores the result
TMRA (Tra	ansfer data to register MR from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 2 2 1 6	words 1	cycles 1	_	_
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ation	
oporumo				he content	ts of register A to clock
TPU0A (Tr	ransfer data to register PU0 from Accumulator)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oodo	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	1	1	-	-
Operation:	(PU0) ← (A)	Grouping:	Input/Outp	ut operatio	n
				the conten	ts of register A to pull-

TPU1A (Tr	ansfer data to register PU1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 0 ₂ 2 2 E ₁₆	words 1	cycles 1	_	_
Operation:	$(PU1) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	up control		ts of register A to pull J1.
TPU2A (Tr	ransfer data to register PU2 from Accumulator)				
Instruction	D9 D0 1 0 1 1 1 1 1 2 2 F	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(PU2) ← (A)	Grouping:	Input/Outp	ut operation	n
	(* 5 – 7) (* 7)				ts of register A to pull
TO1A (Tra	nsfer data to register Q1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 0 1 0 0 2 2 0 4	words	cycles		OKIP CONDITION
		1	1	_	_
Operation:	$(Q1) \leftarrow (A)$	Grouping:	A/D conve	rsion opera	ition
		Description	: Transfers f		ts of register A to A/D
TR1AB (Tr	ansfer data to register R1 from Accumulator and reg	jister B)			
Instruction code	D9 D0 1 1 1 1 1 1 1 2 3 F 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(R17–R14) ← (B) (R13–R10) ← (A)	Grouping: Description	high-order ter R1, and	the content 4 bits (R17 d the conte	ts of register B to the r–R14) of reload regis- nts of register A to the –R10) of reload regis-

	sfer data to register V1 from Accumulator)							
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	0 0 0 0 1 1 1 1 1 1 2 0 3 F 16	1	1	_	-			
Operation:	(V1) ← (A)	Grouping:	Interrupt o	peration	<u> </u>			
		Description: Transfers the contents of register A to inter-						
			rupt contro	i register v	л.			
TV2A (Tran	nsfer data to register V2 from Accumulator)							
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition			
	[0 0 0 0 1 1 1 1 0 2 0 0 2 16	1	1	_	-			
Operation:	(V2) ← (A)	Grouping:	Interrupt o	peration				
		Description: Transfers the contents of register A to interrupt control register V2.						
TW1A (Trar	nsfer data to register W1 from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 0 0 0 0 1 1 1 0 0 2 0 E	words	cycles	l lag O I	OKIP CONDITION			
	16	1	1	_	-			
Operation:	(W1) ← (A)	Grouping:	Timer oper	ation				
				ha aantan				
			: Transfers t control reg		ts of register A to time			
TW2A (Trar	nsfer data to register W2 from Accumulator)		control reg		ts of register A to time			
TW2A (Tran Instruction code	D9 D0				ts of register A to time			
Instruction		Description Number of	control reg	ister W1.				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
Instruction code	D9	Number of words 1 Grouping:	Number of cycles	Flag CY - ration the conten	Skip			

	ansfer data to register W6 from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 0 0 0 1 0 0 1 1 2 2 1 3	words	cycles					
		1	1	_	_			
Operation:	(W6) ← (A)	Grouping:	Timer oper	ation				
-		Description	: Transfers t	he conten	s of register A to time			
			control reg	ister W6.				
TYA (Trans	sfer data to register Y from Accumulator)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	0 0 0 0 0 0 1 1 0 0 2 0 0 C ₁₆	words	cycles					
		1	1	_				
Operation:	$(Y) \leftarrow (A)$	Grouping:	Register to	register tr	ansfer			
		Description: Transfers the contents of register A to register Y.						
WRST (Wa	atchdog timer ReSeT)							
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 1 0 1 0 0 0 0 0 0 ₂ 2 A 0 ₁₆	1	1	_	(WDF1) = 1			
Operation:	(WDF1) = 1 ?	Grouping:	Other oper	ation				
	After skipping, (WDF1) \leftarrow 0	Description: Skips the next instruction when watchdog						
		timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. When the WDF1 flag.						
				_	next instruction. Also			
			stops the v	vatchdog t	mer function when ex			
			after the D		nstruction immediateliuction.			
		1						
XAM j (eX	change Accumulator and Memory data)							
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
	· · · · · · · · · · · · · · · · · · ·	Number of words	Number of cycles	Flag CY	Skip condition			
Instruction code	D9 D0	words 1	cycles 1	-	<u> </u>			
Instruction	D9	words 1 Grouping:	cycles 1 RAM to reg	– gister trans	- fer			
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	RAM to regular. After exchange with the co	gister trans	fer e contents of M(DP egister A, an exclusive			
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	RAM to red : After exch with the co	gister trans nanging the entents of r	fer e contents of M(DP egister A, an exclusive ormed between regis			
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	RAM to red : After exch with the co OR operat ter X and t	gister trans nanging th natents of r ion is perf he value j	fer e contents of M(DP egister A, an exclusive ormed between regis in the immediate field			
Instruction code	D9 D0 $\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 & j & j & j & j \\ 0 & 1 & 1 & 0 & 1 & j & j & j & j & 2 & 2 & D & j \end{bmatrix}_{16}$ $(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X)EXOR(j)$	words 1 Grouping:	RAM to red : After exch with the co OR operat ter X and t	gister trans nanging th natents of r ion is perf he value j	fer e contents of M(DP egister A, an exclusiv ormed between regis			

XAMD j (e	Xchange Accumulator and Memo	nent registe	er Y and sk	(ip)					
Instruction	D9 1 1 1 1 i i i	Do i	2	Fi		Number of words	Number of cycles	Flag CY	Skip condition
		J 2		' '	16	1	1	_	(Y) = 15
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) - 1$			Grouping: RAM to register transfer Description: After exchanging the contents of M(DF with the contents of register A, an exclusiv OR operation is performed between register X and the value j in the immediate field and stores the result in register X. Subtracts 1 from the contents of register As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register is not 15, the next instruction is executed.					
XAMI j (eX	change Accumulator and Memor	y data	and	d Inc	reme	ent register	Y and skip)	
Instruction	D9 1 1 1 0 i i i	D ₀	2	E i		Number of words	Number of cycles	Flag CY	Skip condition
		J 2 L		<u> </u>	16	1	1	_	(Y) = 0
Operation:	$ \begin{aligned} &(A) \longleftrightarrow (M(DP)) \\ &(X) \longleftrightarrow (X)EXOR(j) \\ &j = 0 \text{ to } 15 \\ &(Y) \longleftrightarrow (Y) + 1 \end{aligned} $			Grouping: Description	offer the contents of M(DP) register A, an exclusive formed between regisin the immediate field, in register X. It is of register Y. As a rehen the contents of e next instruction is contents of register Y is otion is executed.				

MACHINE INSTRUCTIONS (INDEX BY TYPES)

	INE INS				143	(11	10		יט	•	1 -	-3)				l	T
Parameter						In	stru	ction	cod	e					er of ds	er of les	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa no	ade otati		Number of words	Number cycles	Fullcuoli
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
transfe	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A_2-A_0) \leftarrow (DR_2-DR_0) $ $ (A_3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	Х3	X2	X1	X 0	уз	у2	y1	у0	3	х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
sesses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
<u> </u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
transfer	ХАМ ј	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAN	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Ε	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

Skip condition	Carry flag CY	Datailed description
-	_	Transfers the contents of register B to register A.
_	_	Transfers the contents of register A to register B.
-	_	Transfers the contents of register Y to register A.
_	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of register B to the high-order 4 bits (E3–E0) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
_	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
_	_	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
_	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
_	_	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
_	_	Transfers the contents of register X to register A.
-	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
_	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
_	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

4506 Group INSTRUCTIONS

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter	HIL HIS	Instruction code	of	ر ا													
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal	Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	0	p4	рз	p2	p 1	p0	0	8 +r	p)	1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
ration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$
Aritl	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY - A3A2A1A0 -
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	(Mj(DP)) ← 0 j = 0 to 3
Bit op	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n		2		2	2	(A) = n ? n = 0 to 15
S°			J	-	-	•	•	••	-•	-•			٠				

Note :p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4.

	5	
Skip condition	Carry flag C	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	_	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
-	_	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	_	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	_	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

Parameter						In	stru	ction	cod	e					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D ₃	D2	D1	D ₀			ecimal tion	Number of words	Number of cycles	Function
	Ва	0	1	1	a6	a 5	a4	аз	a 2	a1	a ₀	1	8	a a	1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0	E +	p p	2	2	(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a6	a 5	a 4	аз	a2	a 1	ao	2	а	а			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	p4	0	0	рз	p2	p 1	po	2	р	р			
د	ВМ а	0	1	0	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	а	а	1	1	$ \begin{aligned} & (SP) \leftarrow (SP) + 1 \\ & (SK(SP)) \leftarrow (PC) \\ & (PCH) \leftarrow 2 \\ & (PCL) \leftarrow a6-a0 \end{aligned} $
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	p 1	po	0	C +	p p	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (Note)
outine		1	0	0	a6	a 5	a 4	a 3	a2	a1	a 0	2	а	а			(PCL) ← a6-a0
Subi	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
		1	0	0	p4	0	0	рз	p2	p1	p0	2	р	р			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR_2-DR_0,A_3-A_0)$
_	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Retui	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1

Note : p is 0 to 15 for M34506M2, p is 0 to 31 for M34506M4/E4.

Skip condition	Carry flag CY	Datailed description
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued) Instruction code ō Paramete Number (words Number of cycles **Function** Mnemonic Hexadecima Type of D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 instruction notation DΙ 0 0 4 $(INTE) \leftarrow 0$ ΕI 0 0 5 (INTE) ← 1 SNZ0 0 3 8 V10 = 0: (EXF0) = 1? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP SNZI0 0 3 A I12 = 0 : (INT) = "L" ? Interrupt operation I12 = 1 : (INT) = "H" ? TAV1 0 5 4 $(A) \leftarrow (V1)$ TV1A 3 F $(V1) \leftarrow (A)$ TAV2 5 5 (A) ← (V2) $(V2) \leftarrow (A)$ TV2A 0 3 E TAI1 5 3 $(A) \leftarrow (I1)$ TI1A 2 1 7 $(I1) \leftarrow (A)$ TAW1 $(A) \leftarrow (W1)$ В TW1A 0 E $(W1) \leftarrow (A)$ TAW2 2 4 C $(A) \leftarrow (W2)$ TW2A 0 F $(W2) \leftarrow (A)$ TAW6 2 5 0 $(A) \leftarrow (W6)$ TW6A $(W6) \leftarrow (A)$ 2 1 3 TAB1 2 7 0 $(B) \leftarrow (T17-T14)$ $(A) \leftarrow (T13-T10)$ T1AB 2 3 0 $(T17-T14) \leftarrow (B)$ Timer operation $(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$ $(B) \leftarrow (T27-T24)$ TAB2 2 7 1 $(A) \leftarrow (T23-T20)$ T2AB 2 3 1 $(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$ TR1AB 2 3 F (R17–R14) ← (B) $(R13-R10) \leftarrow (A)$ SNZT1 8 0 V12 = 0: (T1F) = 1? After skipping, $(T1F) \leftarrow 0$ V12 = 1: SNZT1 = NOP SNZT2 2 8 1 V13 = 0: (T2F) = 1? After skipping, $(T2F) \leftarrow 0$ V13 = 1: SNZT2 = NOP

Skip condition	Carry flag CY	Datailed description
_	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1: Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
_	_	Transfers the contents of interrupt control register V1 to register A.
-	_	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.
_	_	Transfers the contents of timer control register W1 to register A.
_	-	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
_	_	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W6 to register A.
-	-	Transfers the contents of register A to timer control register W6.
-	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Skips the next instruction when timer 1 interrupt request flag T1F is "1." After skipping, clears (0) to the T1F flag. When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	-	When V13 = 0 : Skips the next instruction when timer 1 interrupt request flag T2F is "1." After skipping, clears (0) to the T2F flag. When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)

Parameter		Instruction code					er of	er of									
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex n	ade otat	cimal on	Number of words	Number of cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	ОР0А	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A_1, A_0) \leftarrow (P2_1, P2_0)$ $(A_3, A_2) \leftarrow 0$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P21, P20) ← (A1, A0)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 3
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 3$
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0?
		0	0	0	0	1	0	1	0	1	1	0	2	В			(Y) = 0 to 3
_	SCP	4	0	4	0	0	0	4	4	0	4	,	0	D	4	_	(0) . 1
eratio	RCP	1	0	1	0	0	0	1	1	0	1		8		1		$(C) \leftarrow 1$ $(C) \leftarrow 0$
nt op	SNZCP	1	0	1	0	0	0	1	0	0	1		8		1		(C) = 1?
Outp	014201	•	O	•	O	Ü	O	•	Ü	Ü	•	_	Ü	J			(0) = 1.
Input/Output operation	IAK	1	0	0	1	1	0	1	1	1	1	2	6	F	1	1	$ (A0) \leftarrow (K) (A3-A1) \leftarrow 0 $
	ОКА	1	0	0	0	0	1	1	1	1	1	2	1	F	1	1	$(K) \leftarrow (A_0)$
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	E	1	1	(PU1) ← (A)
	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	(PU2) ← (A)

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A.
-	_	Outputs the contents of the low-order 2 bits (A ₁ , A ₀) of register A to port P2.
_	_	Sets (1) to port D.
-	_	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ? (Y) = 0 to 3	-	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
-	_	Sets (1) to port C.
_	_	Clears (0) to port C.
(C) = 1	-	Skips the next instruction when the contents of port C is "1." Executes the next instruction when the contents of port C is "0."
-	_	Transfers the contents of port K to the bit 0 (Ao) of register A.
_	_	Outputs the contents of bit 0 (Ao) of register A to port K.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of register A to pull-up control register PU2.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

	INE INS				.,,							-0)	- (1	-	I	- Cuj	T	
Parameter						Ir	stru	ction	cod	e					er of	er of les	Function	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal on	Number o	Number of cycles	Fulction	
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1		In A/D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)	
ıtion	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A3, A2) \leftarrow (AD1, AD0)$ $(A1, A0) \leftarrow 0$	
A/D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	$ (AD7-AD4) \leftarrow (B) $ $ (AD3-AD0) \leftarrow (A) $	
conve	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)	
A/D	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$	
	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting	
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP	
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1	
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	RAM back-up	
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF2 instruction valid	
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?	
ation	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled	
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1		(WDF1) = 1 ?, after skipping, (WDF1) ← 0	
	смск	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected	
	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillation selected	
	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$	
	TMRA	1	0	0	0	0	1	0	1	1	0		1		1		(MR) ← (A)	

Skip condition	Carry flag CY	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
-	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	_	In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
_	_	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
-	_	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
-	_	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. Operations of all functions are stopped.
_	_	Makes the immediate after POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
_	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	_	Selects the ceramic resonance circuit and stops the on-chip oscillator.
_	_	Selects the RC oscillation circuit and stops the on-chip oscillator.
_	_	Transfers the contents of clock control register MR to register A.
_	_	Transfers the contents of register A to clock control register MR.

INSTRUCTION CODE TABLE

<u>IIAO I</u>	RUC	HON	COL	<u> </u>	RFF														
]/[D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	-	TASP	A 0	LA 0	TABP 0	TABP 16*	1	ı	BML	BML*	BL	BL*	ВМ	В
0001	1	-	CLD	SZB 1	-	-	TAD	A 1	LA 1	TABP 1	TABP 17*	_	-	BML	BML*	BL	BL*	ВМ	В
0010	2	-	-	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18*	-	1	BML	BML*	BL	BL*	вм	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19*	_	-	BML	BML*	BL	BL*	вм	В
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20*	-	İ	BML	BML*	BL	BL*	вм	В
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21*	-	ı	BML	BML*	BL	BL*	вм	В
0110	6	RC	-	SEAM	_	RTI	_	A 6	LA 6	TABP 6	TABP 22*	_	-	BML	BML*	BL	BL*	вм	В
0111	7	sc	DEY	_	_	_	_	A 7	LA 7	TABP 7	TABP 23*	-	ı	BML	BML*	BL	BL*	вм	В
1000	8	POF2	AND	_	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24*	-	1	BML	BML*	BL	BL*	вм	В
1001	9	_	OR	TDA	_	LZ 1	_	A 9	LA 9	TABP 9	TABP 25*	-	1	BML	BML*	BL	BL*	вм	В
1010	Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26*	_	-	BML	BML*	BL	BL*	вм	В
1011	В	AMC	-	_	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27*	-	1	BML	BML*	BL	BL*	вм	В
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28*	_	-	BML	BML*	BL	BL*	вм	В
1101	D	_	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29*	-	-	BML	BML*	BL	BL*	вм	В
1110	Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30*	-	-	BML	BML*	BL	BL*	вм	В
1111	F	-	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31*	-	1	BML	BML*	BL	BL*	вм	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

The	The second word								
10	0aaa	aaaa							
10	0aaa	aaaa							
10	0p00	pppp							
10	0p00	pppp							
00	0111	nnnn							
00	0010	1011							
	10 10 10 10 00	10 0aaa 10 0aaa 10 0p00 10 0p00 00 0111							

• * cannot be used in the M34506M2-XXXFP.

4506 Group INSTRUCTIONS

INSTRUCTION CODE TABLE (continued)

IIVOI	NUC	IIOI	COL	<u> </u>	(DLL	(COII	tinue	;u)										
1	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	-	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	-	l	OP1A	T2AB	-	I	IAP1	TAB2	SNZT2	_	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	-	OP2A	_	_	TAMR	IAP2	_	_	_	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	-	TW6A	_	ı	-	TAI1	ı	-	_	_	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	_	TAQ1	ı	-	_	_	_	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	-	TK2A	_	_	-	ı	-	_	_	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	_	_	-	TAK0	-	_	_	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	-	TI1A	_	_	-	ı	-	_	SNZAD	_	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	-	-	_		-	-	_	_	_	_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	ı	_	TADAB	TALA	TAK1	Í	TABAD	SNZCP	_	-	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	-	ĺ	_	ĺ	Ī	TAK2	ĺ	_	_	СМСК	_	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	_	ı	TAW1	ı	ı	_	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	-	-	_	_	TAW2	-	ı	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	_	ı	TPU0A	-	-	ı	ı	_	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	-	TPU1A	_	_	_	ı	_	_	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	OKA	TPU2A	TR1AB	_	_	IAK	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

The	secon	d word
10	0aaa	aaaa
10	0aaa	aaaa
10	0p00	pppp
10	0p00	pppp
00	0111	nnnn
00	0010	1011
	10 10 10 10 00	10 0aaa 10 0p00 10 0p00 00 0111

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4506 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 20 shows the product of built-in PROM version. Figure 54 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 20 Product of built-in PROM version

Part number	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34506E4FP	4096 words	256 words	PRSP0020DA-A	One Time PROM [shipped in blank]

(1) PROM mode

The 4506 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), \overline{PGM} to "H" after connecting wires as shown in Figure 54 and powering on the VDD pin, and then applying 12 V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Use the special-perpose serial programmer when performing serial read/program.

As for the serial programmer for the single-chip microcomputer (serial programmer and control software), refer to the "Renesas Microcomputer Development Support Tools" Hompage (http://www.renesas.com/en/tools).

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 53 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

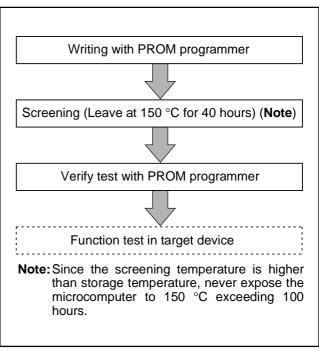


Fig. 53 Flow of writing and test of the product shipped in blank

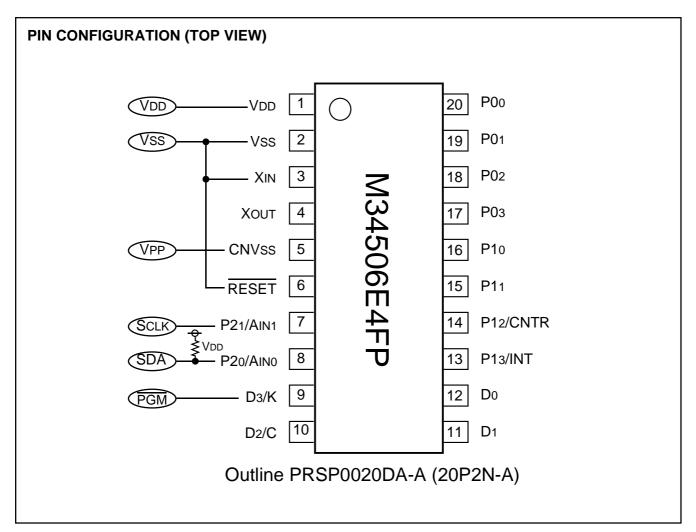


Fig. 54 Pin configuration of built-in PROM version

CHAPTER 2

APPLICATION

- 2.1 I/O pins
- 2.2 Interrupts
- 2.3 Timers
- 2.4 A/D converter
- 2.5 Reset
- 2.6 RAM back-up
- 2.7 Oscillation circuit

2.1 I/O pins

The 4506 Group has the fourteen I/O pins. (Port P12 is also used as CNTR I/O pin, Port P13 is also used as INT input pin, Port P2 is also used as analog input pins AINO and AIN1, Port D2 is also used as Port C, and Port D3 is also used as Port K, respectively).

This section describes each port I/O function, related registers, application example using each port function and notes.

2.1.1 I/O ports

(1) Port P0

Port P0 is a 4-bit I/O port.

Port P0 has the key-on wakeup function which turns ON/OFF with register K0 and pull-up transistor which turns ON/OFF with register PU0.

■ Input/output of port P0

Data input to port P0

Set the output latch of specified port P0i (i=0 to 3) to "1" with the **OP0A** instruction. If the output latch is set to "0," "L" level is input.

The state of port P0 is transferred to register A when the IAP0 instruction is executed.

Data output from port P0

The contents of register A is output to port P0 with the OP0A instruction.

The output structure is an N-channel open-drain.

(2) Port P1

Port P1 is a 4-bit I/O port.

Port P1 has the key-on wakeup function which turns ON/OFF with register K1 and pull-up transistor which turns ON/OFF with register PU1.

■ Input/output of port P1

Data input to port P1

Set the output latch of specified port P1i (i=0 to 3) to "1" with the **OP1A** instruction. If the output latch is set to "0," "L" level is input.

The state of port P1 is transferred to register A when the IAP1 instruction is executed.

Data output from port P1

The contents of register A is output to port P1 with the OP1A instruction.

The output structure is an N-channel open-drain.

Note: Port P12 is also used as CNTR. Accordingly, when it is used as port P12, set "0" to the timer control register W60.

(3) Port P2

Port P2 is a 2-bit I/O port.

Also, its key-on wakeup function is switched to ON/OFF by the register K20 and K21, and its pull-up transistor function is switched to ON/OFF by the register PU20 and PU21.

■ Input/output of port P2

Data input to port P2

Set the output latch of specified port P2i (i=0, 1) to "1" with the **OP2A** instruction. If the output latch is set to "0," "L" level is input.

The state of port P2 is transferred to register A when the **IAP2** instruction is executed. However, port P2 is 2 bits and A2 and A3 are fixed to "0."

Data output from port P2

The contents of register A is output to port P2 with the OP2A instruction.

The output structure is an N-channel open-drain.

(4) Port D

D0-D3 are four independent I/O ports.

Also, as for ports D2 and D3, its key-on wakeup function is switched to ON/OFF by the register K22 and K23, and its pull-up transistor function is switched to ON/OFF by the register PU22 and PU23.

■ Input/output of port D

Each pin of port D has an independent 1-bit wide I/O function. For I/O of ports D0-D3, select one of port D with the register Y of the data pointer first.

Data input to port D

Set the output latch of specified port Di (i = 0 to 3) to "1" with the **SD** instruction.

When the output latch is set to "0," "L" level is input.

When the **SZD** instruction is executed, if the port specified by register Y is "0," the next instruction is skipped. If it is "1," the next instruction is executed.

Data output from port D

Set the output level to the output latch with the SD and RD instructions.

The state of pin enters the high-impedance state when the SD instruction is executed.

The states of all port D enter the high-impedance state when the CLD instruction is executed.

The state of pin becomes "L" level when the RD instruction is executed.

The output structure is an N-channel open-drain.

- Notes 1: When the SD and RD instructions are used, do not set "01002" or more to register Y.
 - 2: Port D2 is also used as Port C. Accordingly, when using port D2, set the output latch to "1" with the SCP instruction.
 - **3:** Port D₃ is also used as Port K. Accordingly, when using port D₃, set the output latch to "1" with the **OKA** instruction.

(5) Port C

Port C is a 1-bit I/O port.

■ Input/output of port C

Data input to port C

Set the output latch of specified port C to "1" with the **SCP** instruction. If the output latch is set to "0." "L" level is input.

When the **SNZCP** instruction is executed, if the port C is "1," the next instruction is skipped. If it is "0," the next instruction is executed.

Data output from port C

Set the output level to the output latch with the SCP and RCP instructions.

The state of pin enters the high-impedance state when the SCP instruction is executed.

The state of pin becomes "L" level when the RCP instruction is executed.

The output structure is an N-channel open-drain.

Note: Port C is also used as port D2. Accordingly, when using port C, set the output latch to "1" with the **SD** instruction.

(6) Port K

Port K is a 1-bit I/O port.

■ Input/output of port K

Data input to port K

Set the output latch of specified port K to "1" with the **OKA** instruction. If the output latch is set to "0," "L" level is input.

The state of port K is transferred to register A when the ${\it IAK}$ instruction is executed.

However, port K is 1 bit and A₁, A₂ and A₃ are fixed to "0."

Data output from port K

The contents of register A is output to port K with the **OKA** instruction.

The output structure is an N-channel open-drain.

Note: Port K is also used as port D3. Accordingly, when using port K, set the output latch to "1" with the **SD** instruction.

2.1.2 Related registers

(1) Key-on wakeup control register K0

Register K0 controls the ON/OFF of the key-on wakeup function of ports P00–P03. Set the contents of this register through register A with the **TK0A** instruction. The contents of register K0 is transferred to register A with the **TAK0** instruction. Table 2.1.1 shows the key-on wakeup control register K0.

Table 2.1.1 Key-on wakeup control register K0

Key-	on wakeup control register K0	at res	et: 00002	at RAM back-up : state retained	R/W			
K03	Port P03	0	Key-on wakeup invalid					
NU3	key-on wakeup control bit	1	Key-on wakeup valid					
V00	Port P02	0	Key-on wakeup invalid					
K02	key-on wakeup control bit	1	Key-on wak	ceup valid				
K01	Port P01	0	Key-on wak	ceup invalid				
KU1	key-on wakeup control bit	1	Key-on wak	ceup valid				
K00	Port P00	0	Key-on wak	ceup invalid				
	key-on wakeup control bit	1	Key-on wak	ceup valid				

Note: "R" represents read enabled, and "W" represents write enabled.

(2) Pull-up control register PU0

Register PU0 controls the ON/OFF of the ports P00–P03 pull-up transistor. Set the contents of this register through register A with the **TPU0A** instruction. Table 2.1.2 shows the pull-up control register PU0.

Table 2.1.2 Pull-up control register PU0

P	Pull-up control register PU0		et: 00002	at RAM back-up : state retained	W					
PU03	Port P03	0	Pull-up tran	nsistor OFF						
PU03	pull-up transistor control bit	1	Pull-up tran	Pull-up transistor ON						
PU02	Port P02	0	0 Pull-up transistor OFF							
PU02	pull-up transistor control bit	1	Pull-up tran	nsistor ON						
PU01	Port P01	0	Pull-up tran	nsistor OFF						
P001	pull-up transistor control bit	1	Pull-up tran	nsistor ON						
PU00	Port P00	0	Pull-up tran	nsistor OFF						
F 000	pull-up transistor control bit	1	Pull-up tran	nsistor ON						

Note: "W" represents write enabled.

(3) Key-on wakeup control register K1

Register K1 controls the ON/OFF of the key-on wakeup function of ports P10–P13. Set the contents of this register through register A with the **TK1A** instruction. The contents of register K1 is transferred to register A with the **TAK1** instruction. Table 2.1.3 shows the key-on wakeup control register K1.

Table 2.1.3 Key-on wakeup control register K1

Key-	on wakeup control register K1	at res	et: 00002	at RAM back-up : state retained	R/W			
K13	Port P13/INT	0	P13 key-on wakeup invalid/INT pin key-on wakeup val					
K 13	key-on wakeup control bit	1	P13 key-on	wakeup valid/INT pin key-on wakeu	p invalid			
	Port P12/CNTR	0	Key-on wakeup invalid					
K12	key-on wakeup control bit	1	Key-on wal	ceup valid				
K11	Port P11	0	Key-on wal	ceup invalid				
K11	key-on wakeup control bit	1	Key-on wal	ceup valid				
K10	Port P10	0	Key-on wal	ceup invalid				
K10	key-on wakeup control bit	1	Key-on wal	ceup valid				

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Pull-up control register PU1

Register PU1 controls the ON/OFF of the ports P10-P13 pull-up transistor. Set the contents of this register through register A with the **TPU1A** instruction. Table 2.1.4 shows the pull-up control register PU1.

Table 2.1.4 Pull-up control register PU1

P	Pull-up control register PU1		et: 00002	at RAM back-up : state retained	W			
PU13	Port P13/INT	0	Pull-up transistor OFF					
PU13	pull-up transistor control bit	ansistor control bit 1 Pull-up transistor ON						
PU12	Port P12/CNTR	0	0 Pull-up transistor OFF					
PU12	pull-up transistor control bit	1	Pull-up transistor ON					
PU11	Port P11	0	Pull-up tran	sistor OFF				
PUIT	pull-up transistor control bit	1	Pull-up tran	sistor ON				
PU10	Port P10	0	Pull-up tran	sistor OFF				
	pull-up transistor control bit	1	Pull-up tran	sistor ON				

Note: "W" represents write enabled.

(5) Key-on wakeup control register K2

Register K2 controls the ON/OFF of the key-on wakeup function of ports P20, P21, D2/C and D3/K. Set the contents of this register through register A with the **TK2A** instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.1.5 shows the key-on wakeup control register K2.

Table 2.1.5 Key-on wakeup control register K2

Key-on wakeup control register K2		at reset: 00002		at RAM back-up : state retained	R/W		
K23	Port D3/K	0 Key-on wake		ceup invalid			
NZ3	key-on wakeup control bit	1	Key-on wakeup valid				
K22	Port D2/C	0	Key-on wakeup invalid				
N 22	key-on wakeup control bit	1	Key-on wakeup valid				
K21	Port P21/AIN1	0	Key-on wakeup invalid				
N21	key-on wakeup control bit	1	Key-on wakeup valid				
K20	Port P20/AIN0	0	Key-on wak	ceup invalid			
M20	key-on wakeup control bit	1	Key-on wak	ceup valid			

Note: "R" represents read enabled, and "W" represents write enabled.

(6) Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P20, P21, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the **TPU2A** instruction. Table 2.1.6 shows the pull-up control register PU2.

Table 2.1.6 Pull-up control register PU2

P	Pull-up control register PU2		et: 00002	at RAM back-up : state retained	W		
PU23	Puga Port D3/K		Pull-up trar	nsistor OFF			
PU23	pull-up transistor control bit	1	Pull-up transistor ON				
PU22	Port D2/C	0	Pull-up transistor OFF				
PU22	pull-up transistor control bit	1	Pull-up transistor ON				
PU21	Port P21/AIN1	0	Pull-up transistor OFF				
PUZ1	pull-up transistor control bit	1	Pull-up transistor ON				
PU20	Port P20/AIN0	0	Pull-up transistor OFF				
F UZ0	pull-up transistor control bit	1	Pull-up transistor ON				

Note: "W" represents write enabled.

(7) Timer control register W6

Bit 0 of register W6 selects the P12/CNTR function, and bit 1 controls the CNTR output. Set the contents of this register through register A with the **TW6A** instruction. The contents of register W6 is transferred to register A with the **TAW6** instruction. Table 2.1.7 shows the timer control register W6.

Table 2.1.7 Timer control register W6

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W	
W63	Not used	0	This bit has no function, but read/write is enabled			
W62	Not used	0	This bit has no function, but read/write is enabled.			
W61	W.C. CNTD custout control bit		Timer 1 und	Timer 1 underflow signal divided by 2 output		
VVOI	CNTR output control bit	1	Timer 2 underflow signal divided by 2 output			
W60	P12/CNTR function selection bit	0	P12 (I/O) / CNTR input			
VV 6 0	P12/CNTR function selection bit	1	P12 (input)	/ CNTR input/output		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When setting the port, W63-W61 are not used.

2.1.3 Port application examples

(1) Key input by key scan

Key matrix can be set up by connecting keys externally because port D output structure is an N-channel open-drain and port P0 has the pull-up resistor.

Outline: The connecting required external part is just keys.

Specifications: Port D is used to output "L" level and port P0 is used to input 16 keys.

Figure 2.1.1 shows the key input and Figure 2.1.2 shows the key input timing.

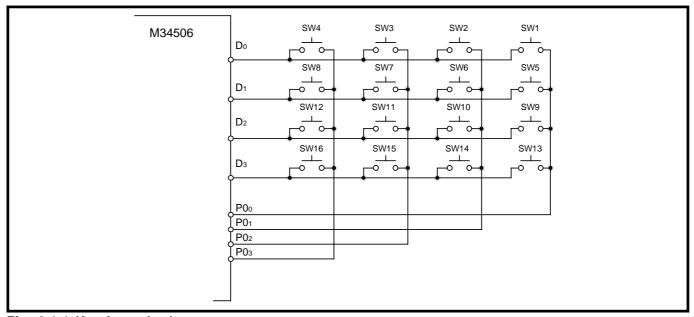


Fig. 2.1.1 Key input by key scan

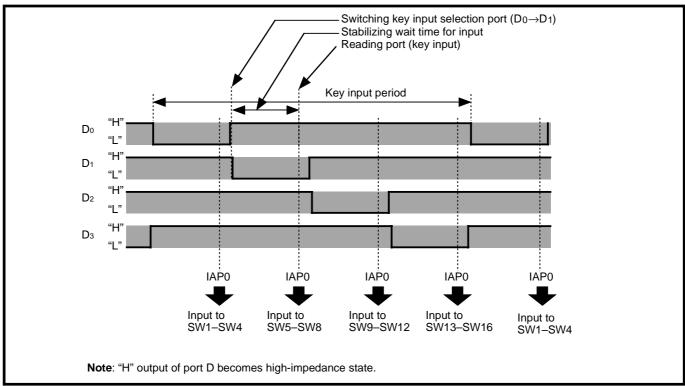


Fig. 2.1.2 Key scan input timing

2.1.4 Notes on use

(1) Note when an I/O port is used as an input port

Set the output latch to "1" and input the port value before input. If the output latch is set to "0," "L" level can be input.

(2) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the Vss line and the VDD line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the VPP pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 $k\Omega$ resistor which is connected to the CNVss/VPP pin at the shortest distance.

(3) Note on multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20 and P21 can be used even when AIN0 and AIN1 are selected.

(4) Connection of unused pins

Table 2.1.8 shows the connections of unused pins.

(5) SD, RD instructions

When the SD and RD instructions are used, do not set "01002" or more to register Y.

(6) Analog input pins

When both analog input AINO and AIN1 and I/O port P2 function are used, note the following;

Selection of analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1."

Also, the port input function of the pin functions as an analog input is undefined.

(7) Notes on port P13/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

Table 2.1.8 Connections of unused pins

Pin	Connection	Usage condition
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)
Xout	Open.	System operates by the external clock.
		(The ceramic resonator is selected with the CMCK instruction.)
		System operates by the RC oscillator.
		(The RC oscillation is selected with the CRCK instruction.)
		System operates by the on-chip oscillator. (Note 1)
D0, D1	Open. (Output latch is set to "1.")	
	Open. (Output latch is set to "0.")	
	Connect to Vss.	
D2/C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P10, P11	Open. (Output latch is set to "1.")	
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P13/INT	Open. (Output latch is set to "1.")	
		pin is disabled. (Notes 4, 5)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)

- **Notes 1:** When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).
 - 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
 - **3:** When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.
 - 4: When selecting the key-on wakeup function, select also the pull-up function.
 - 5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")

(Note when connecting to Vss)

• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

2.2 Interrupts

The 4506 Group has four interrupt sources: external (INT), timer 1, timer 2, and A/D.

This section describes individual types of interrupts, related registers, application examples using interrupts and notes.

2.2.1 Interrupt functions

(1) External 0 interrupt (INT)

The interrupt request occurs by the change of input level of INT pin.

The interrupt valid waveform can be selected by the bits 1 and 2, and the INT pin input is controlled by the bit 3 of the interrupt control register I1.

■ External 0 interrupt INT processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 0 interrupt occurs, the interrupt processing is executed from address 0 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZ0** instruction is valid when the bit 0 of register V1 is set to "0."

(2) Timer 1 interrupt

The interrupt request occurs by the timer 1 underflow.

■ Timer 1 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 1 interrupt occurs, the interrupt processing is executed from address 4 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT1** instruction is valid when the bit 2 of register V1 is set to "0."

(3) Timer 2 interrupt

The interrupt request occurs by the timer 2 underflow.

■ Timer 2 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 2 interrupt occurs, the interrupt processing is executed from address 6 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT2** instruction is valid when the bit 3 of register V1 is set to "0."

(4) A/D interrupt

The interrupt request occurs by the end of the A/D conversion.

■ A/D interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the A/D interrupt occurs, the interrupt processing is executed from address C in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZAD** instruction is valid when the bit 2 of register V2 is set to "0."

2.2.2 Related registers

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable.

Interrupts are enabled when INTE flag is set to "1" with the **EI** instruction and disabled when INTE flag is cleared to "0" with the **DI** instruction.

When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the **EI** instruction is executed.

Note: The interrupt enabled with the **EI** instruction is performed after the **EI** instruction and one more instruction.

(2) Interrupt control register V1

Interrupt enable bit of external 0, timer 1 and timer 2 are assigned to register V1.

Set the contents of this register through register A with the TV1A instruction.

In addition, the **TAV1** instruction can be used to transfer the contents of register V1 to register A. Table 2.2.1 shows the interrupt control register V1.

Table 2.2.1 Interrupt control register V1

In	Interrupt control register V1		et: 00002	at RAM back-up: 00002	R/W
\/12	V13 Timer 2 interrupt enable bit	0	Interrupt dis	sabled (SNZT2 instruction is valid)	
V 13		1	Interrupt en	abled (SNZT2 instruction is invalid)	(Note 2)
\/10	V12 Timer 1 interrupt enable bit	0	Interrupt dis	sabled (SNZT1 instruction is valid)	
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid)	(Note 2)
V11	Not used	0	This bit has no function, but read/write is enabled		blod
VII		1	This bit has no function, but read/write is enabled.		
V10	External 0 interrupt enable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)	
V 10		1	Interrupt en	abled (SNZ0 instruction is invalid)	(Note 2)

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: These instructions are equivalent to the NOP instruction.
- 3: When the interrupt is set, V11 is not used.

(3) Interrupt control register V2

Interrupt enable bit of A/D is assigned to register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the **TAV2** instruction can be used to transfer the contents of register V2 to register A. Table 2.2.2 shows the interrupt control register V2.

Table 2.2.2 Interrupt control register V2

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W	
V23	Not used	0	This bit has no function, but read/write is enab		oled.	
		0	Interrupt dis	Interrupt disabled (SNZAD instruction is valid)		
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid) (Note 2			
V21	Not used	0	This bit has no function, but read/write is enabled.			
V Z 1	Not used	1				
V20	Not used	0	This bit has no function, but read/write is enable		oled	
V Z U		1			Jiou.	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This instruction is equivalent to the NOP instruction.
- 3: When the interrupt is set, V23, V21 and V20 are not used.

(4) Interrupt request flag

The activated condition for each interrupt is examined. Each interrupt request flag is set to "1" when the activated condition is satisfied, even if the interrupt is disabled by the INTE flag or its interrupt enable bit.

Each interrupt request flag is cleared to "0" when either;

- •an interrupt occurs, or
- •the next instruction is skipped with a skip instruction.

(5) Interrupt control register I1

The INT pin timer 1 control enable bit is assigned to bit 0, INT pin edge detection circuit control bit is assigned to bit 1, interrupt valid waveform for INT pin/return level selection bit is assigned to bit 2 and INT pin input control bit is assigned to bit 3.

Set the contents of this register through register A with the TI1A instruction.

In addition, the **TAI1** instruction can be used to transfer the contents of register I1 to register A. Table 2.2.3 shows the interrupt control register I1.

Table 2.2.3 Interrupt control register I1

1	Interrupt control register I1		et: 00002	at RAM back-up : state retained	R/W	
	INT pin input control bit (Note 2)	0	INT pin inp	INT pin input disabled		
113	in pin input control bit (Note 2)	1	INT pin inp	ut enabled		
	Interrupt valid waveform for INT pin/return level selection bit (Note 2)	0	Falling wav	eform ("L" level of INT pin is recogn	ized with	
110		0	the SNZI0 instruction)/"L" level			
112		1	Rising waveform ("H" level of INT pin is recognized with			
			the SNZIO	instruction)/"H" level		
 [11]	INT pin edge detection circuit	0	One-sided edge detected			
111	control bit	1	Both edges	detected		
I10	INT pin	0	Disabled			
110	timer 1 control enable bit	1	Enabled			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

2.2.3 Interrupt application examples

(1) INT interrupt

The INT pin is used for external 0 interrupt, of which valid waveforms can be chosen, which can recognize the change of both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 0 interrupt can be used by dealing with the change of edge ("H" \rightarrow "L" or "L" \rightarrow "H") in both directions as a trigger.

Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow "L" or "L" \rightarrow "H").

Figure 2.2.1 shows an operation example of an external 0 interrupt, and Figure 2.2.2 shows a setting example of an external 0 interrupt.

(2) Timer 1 interrupt

Constant period interrupts by a setting value to timer 1 can be used.

Outline: The constant period interrupts by the timer 1 underflow signal can be used.

Specifications: Prescaler and timer 1 divide the system clock frequency f(XIN) = 4.0 MHz, and the timer 1 interrupt occurs every 1 ms.

Figure 2.2.3 shows a setting example of the timer 1 constant period interrupt.

(3) Timer 2 interrupt

Constant period interrupts by a setting value to timer 2 can be used.

Outline: The constant period interrupts by the timer 2 underflow signal can be used.

Specifications: Timer 2 and prescaler divide the system clock frequency (= 4.0 MHz), and the timer 2 interrupt occurs every about 1 ms.

Figure 2.2.4 shows a setting example of the timer 2 constant period interrupt.

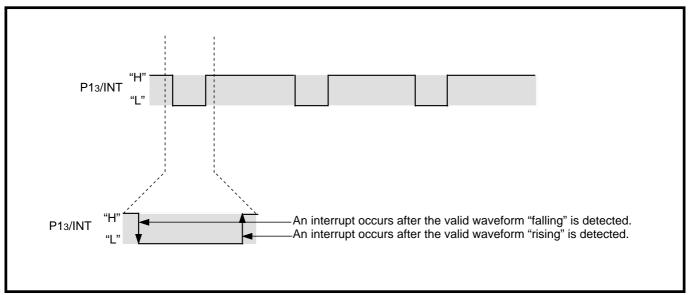


Fig. 2.2.1 INT interrupt operation example

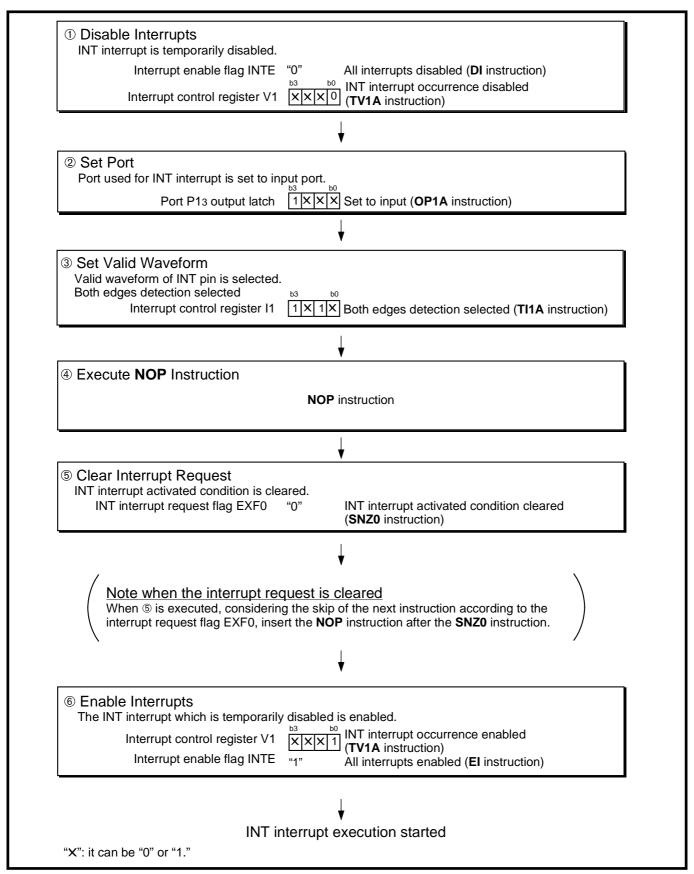


Fig. 2.2.2 INT interrupt setting example

Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

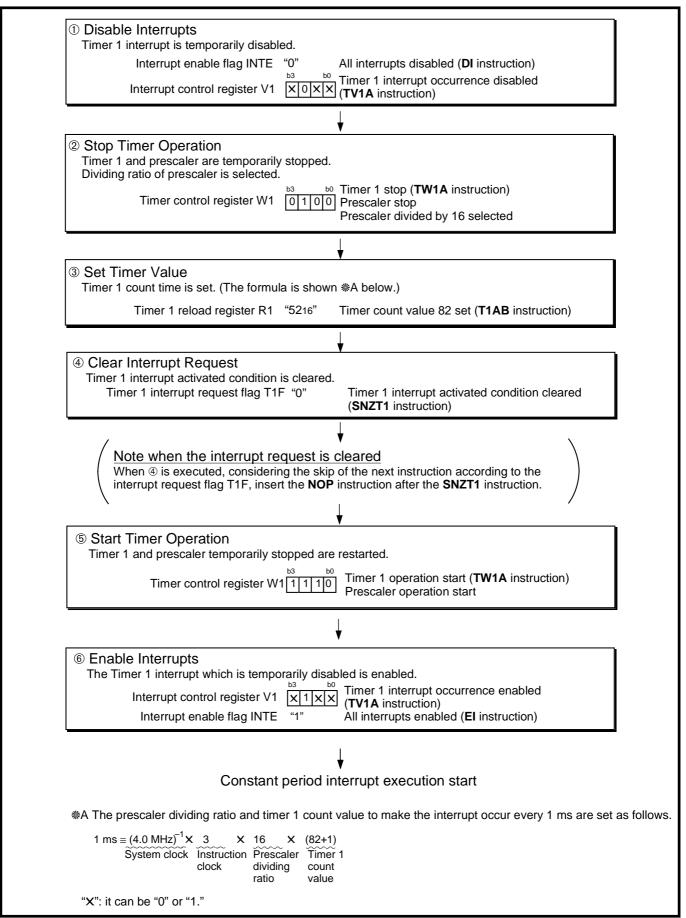


Fig. 2.2.3 Timer 1 constant period interrupt setting example

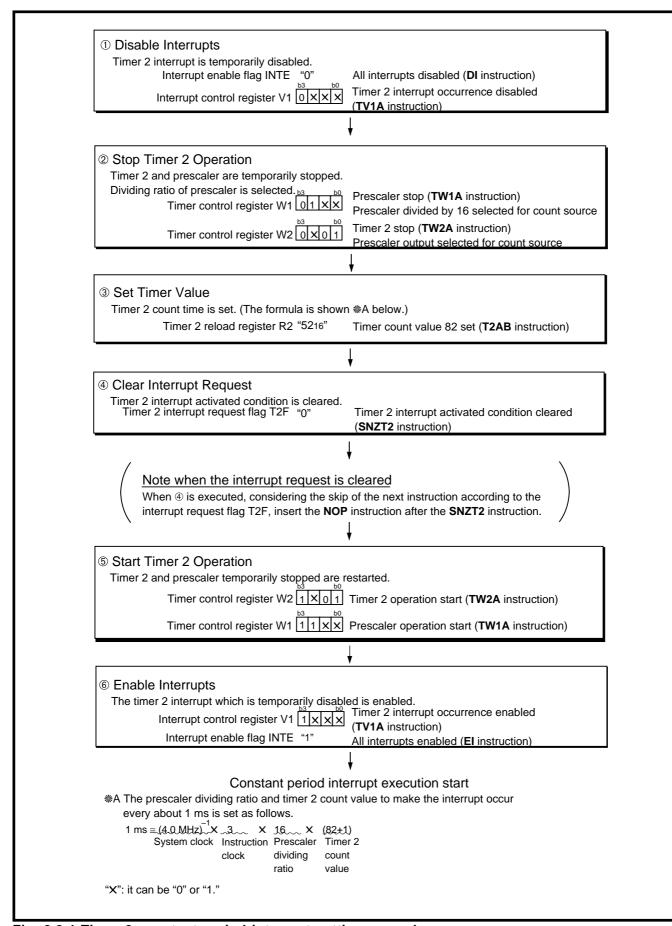


Fig. 2.2.4 Timer 2 constant period interrupt setting example

2.2.4 Notes on use

(1) Setting of INT interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P13/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(2) Setting of INT pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P13/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(3) Multiple interrupts

Multiple interrupts cannot be used in the 4506 Group.

(4) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(5) P13/INT pin

The P13/INT pin need not be selected the external interrupt input INT function or the normal output port P13 function. However, the EXF0 flag is set to "1" when a valid waveform is input to INT pin even if it is used as an I/O port P13.

(6) Power down instruction

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction.

2.3 Timers

The 4506 Group has two 8-bit timers (each has a reload register) and a 16-bit fixed dividing frequency timer which has the watchdog timer function.

This section describes individual types of timers, related registers, application examples using timers and notes.

2.3.1 Timer functions

- (1) Timer 1
 - **■** Timer operation

(Timer 1 has the timer 1 count start trigger function from P13/INT pin input)

- (2) Timer 2
 - **■** Timer operation
- (3) 16-bit timer

■ Watchdog function

Watchdog timer provides a method to reset the system when a program run-away occurs. System operates after it is released from reset. When the timer count value underflows, the WDF1 flag is set to "1." Then, if the **WRST** instruction is never executed until timer WDT counts 65534, WDF2 flag is set to "1," and system reset occurs.

When the **DWDT** instruction and the **WRST** instruction are executed continuously, the watchdog timer function is invalid.

The **WRST** instruction has the skip function. When the **WRST** instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

2.3.2 Related registers

(1) Interrupt control register V1

The external 0 interrupt enable bit is assigned to bit 0, timer 1 interrupt enable bit is assigned to bit 2, and the timer 2 interrupt enable bit is assigned to bit 3.

Set the contents of this register through register A with the **TV1A** instruction. The **TAV1** instruction can be used to transfer the contents of register V1 to register A.

Table 2.3.1 shows the interrupt control register V1.

Table 2.3.1 Interrupt control register V1

Interrupt control register V1		at reset : 00002		at RAM back-up : 00002 R/W	
V13	V/4 Times 2 interment anable hit		Interrupt dis	sabled (SNZT2 instruction is valid)	
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt en	abled (SNZT2 instruction is invalid) (Note 2	
\/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid) (Note 2	
V11	Not used	0	This bit has no function, but read/write is enabled.		
VII		1	This bit has no function, but read/white is enabled.		
V10	External 0 interrupt anable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)	
V 10	External 0 interrupt enable bit	1	Interrupt er	abled (SNZ0 instruction is invalid) (Note 2	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: These instructions are equivalent to the NOP instruction.

3: When timer is used, V11 and V10 are not used.

(2) Timer control register W1

The timer 1 count start synchronous circuit control bit is assigned to bit 0, the timer 1 control bit is assigned to bit 1, the prescaler dividing ratio selection bit is assigned to bit 2, and the prescaler control bit is assigned to bit 3.

Set the contents of this register through register A with the **TW1A** instruction. The **TAW1** instruction can be used to transfer the contents of register W1 to register A.

Table 2.3.2 shows the timer control register W1.

Table 2.3.2 Timer control register W1

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W		
W/4 s Brancher control bit		0	Stop (state	initialized)			
W13	Prescaler control bit	1	Operating				
\\//10	W12 Prescaler dividing ratio selection bit		Instruction clock divided by 4				
VV I Z			Instruction clock divided by 16				
W11	Times 4 control hit	0	Stop (state retained)				
VV I 1	Timer 1 control bit	1	Operating				
W10	Timer 1 count start synchronous	0	Count start	synchronous circuit not selected			
VV 10	circuit control bit	1	Count start	synchronous circuit selected			

Note: "R" represents read enabled, and "W" represents write enabled.

(3) Timer control register W2

The timer 2 count source selection bits are assigned to bits 0 and 1, the timer 1 count auto-stop circuit control bit is assigned to bit 2 and the timer 2 control bit is assigned to bit 3.

Set the contents of this register through register A with the **TW2A** instruction. The **TAW2** instruction can be used to transfer the contents of register W2 to register A.

Table 2.3.3 shows the timer control register W2.

Table 2.3.3 Timer control register W2

Timer control register W2		at reset: 000		et: 00002 at RAM back-up: state retained	R/W	
W23 Timer 2 control bit		0		Stop (state retained)		
VVZ3	Timer 2 control bit		1	Operating		
W22	Timer 1 count auto-stop circuit	0		Count auto-stop circuit not selected		
V V Z Z	control bit (Note 2)		1	Count auto-stop circuit selected		
	Timer 2 count source selection bits	W21	W20	Count source		
W21		0	0	Timer 1 underflow signal		
		0	1	Prescaler output (ORCLK)		
W20		1	0	CNTR input		
		1	1	System clock		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

(4) Timer control register W6

The P12/CNTR function selection bit is assigned to bit 0 and the CNTR output control bit is assigned to bit 1.

Set the contents of this register through register A with the **TW6A** instruction. The **TAW6** instruction can be used to transfer the contents of register W6 to register A.

Table 2.3.4 shows the timer control register W6.

Table 2.3.4 Timer control register W6

	Timer control register W6		et: 00002	at RAM back-up : state retained	R/W	
W63	W63 Not used		This bit has	This bit has no function, but read/write is enabled.		
	THOS THOSE GOOD	1				
Mea	W62 Not used	0	This hit has no function, but road/write is enabled			
VV 02		1	This bit has no function, but read/write is enabled.			
\MG4	CNTD custout control bit	0	Timer 1 underflow signal divided by 2 output			
W61	CNTR output control bit	1	Timer 2 underflow signal divided by 2 output			
W60	P12/CNTR function selection bit	0	P12 (I/O) / CNTR input (Note 2)			
VVOU		1	P12 (input)	/ CNTR I/O (Note 2)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: The CNTR input is valid only when the CNTR input is selected for the timer 2 count source.
- 3: When timer is used, W63 and W62 are not used.

^{2:} This function is valid only when the timer 1 count start synchronous circuit is selected.

2.3.3 Timer application examples

(1) Timer operation: measurement of constant period

The constant period by the setting timer count value can be measured.

Outline: The constant period by the timer 1 underflow signal can be measured.

Specifications: Timer 1 and prescaler divides the system clock frequency f(XIN) = 4.0 MHz, and the timer 1 interrupt request occurs every 3 ms.

Figure 2.3.3 shows the setting example of the constant period measurement.

(2) CNTR output operation: piezoelectric buzzer output

Outline: Square wave output from timer 1 can be used for piezoelectric buzzer output.

Specifications: 4 kHz square wave is output from the CNTR pin at system clock frequency f(XIN) = 4.0 MHz. Also, timer 1 interrupt occurs simultaneously.

Figure 2.3.1 shows the peripheral circuit example, and Figure 2.3.4 shows the setting example of CNTR output.

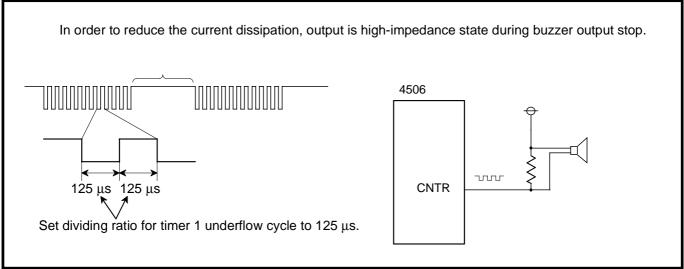


Fig. 2.3.1 Peripheral circuit example

(3) CNTR input operation: event count

Outline: Count operation can be performed by using the signal (falling waveform) input from CNTR pin as the event.

Specifications: The low-frequency pulse from external as the timer 2 count source is input to CNTR pin, and the timer 2 interrupt request occurs every 100 counts.

Figure 2.3.5 shows the setting example of CNTR input.

(4) Timer operation: timer start by external input

Outline: The constant period can be measured by external input.

Specifications: System clock frequency f(XIN) = 4 MHz and timer 1 operates by INT input as a trigger and an interrupt occurs after 1 ms.

Figure 2.3.6 shows the setting example of timer start.

(5) Watchdog timer

Watchdog timer provides a method to reset the system when a program run-away occurs. Accordingly, when the watchdog timer function is set to be valid, execute the **WRST** instruction at a certain period which consists of timer 16-bit timers' 65534 counts or less (execute **WRST** instruction at a cycle of 65534 machine cycles or less).

Outline: Execute the WRST instruction in 16-bit timer's 65534 counts at the normal operation. If a program runs incorrectly, the WRST instruction is not executed and system reset occurs. Specifications: System clock frequency f(XIN) = 4.0 MHz is used, and program run-away is detected by executing the WRST instruction in 49 ms.

Figure 2.3.2 shows the watchdog timer function, and Figure 2.3.7 shows the example of watchdog timer.

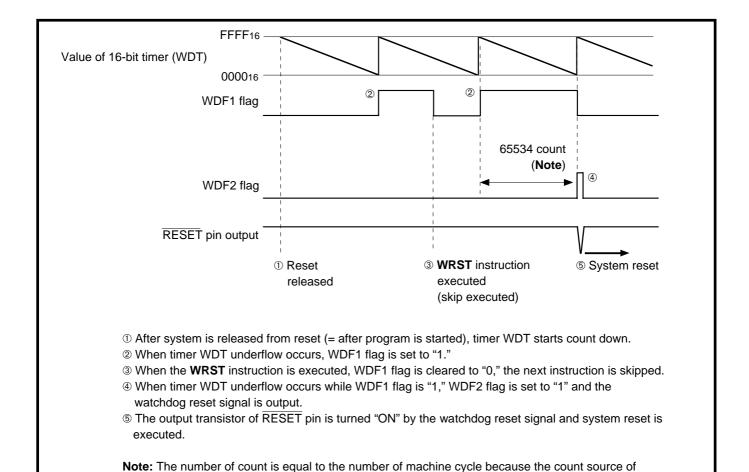


Fig. 2.3.2 Watchdog timer function

watchdog timer is the instruction clock.

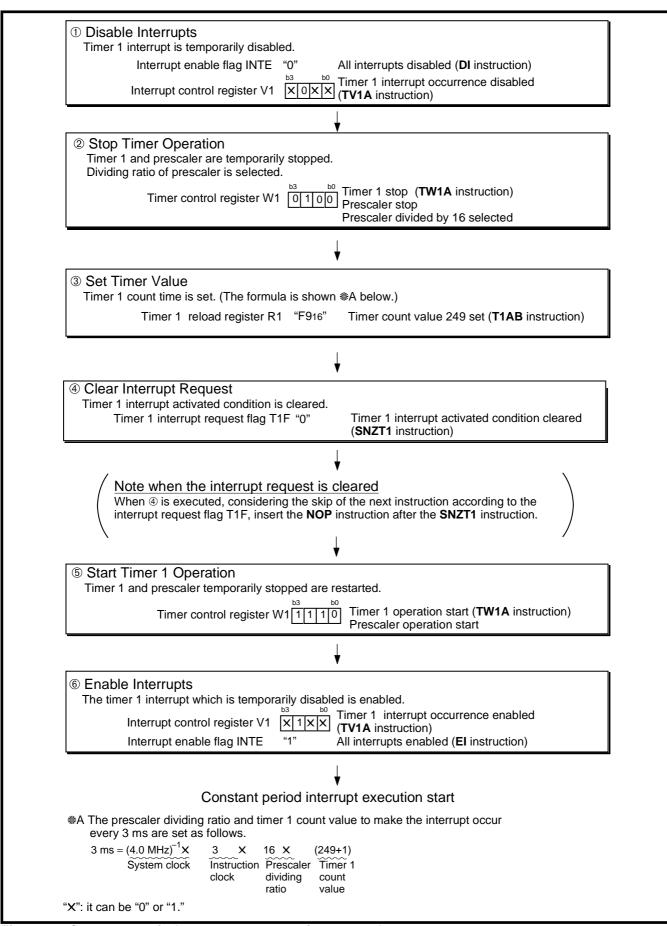


Fig. 2.3.3 Constant period measurement setting example

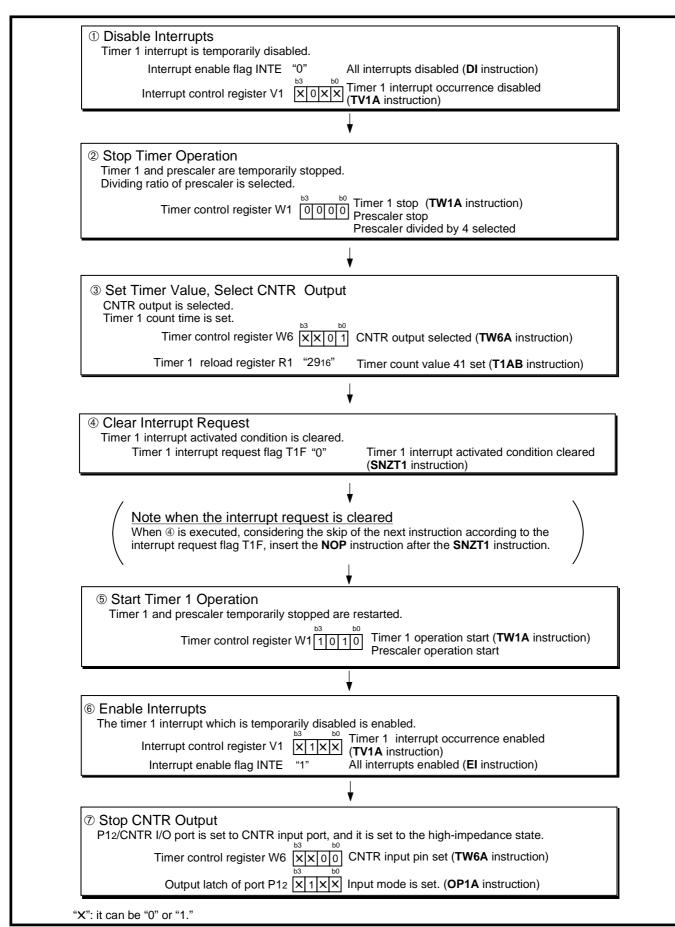


Fig. 2.3.4 CNTR output setting example

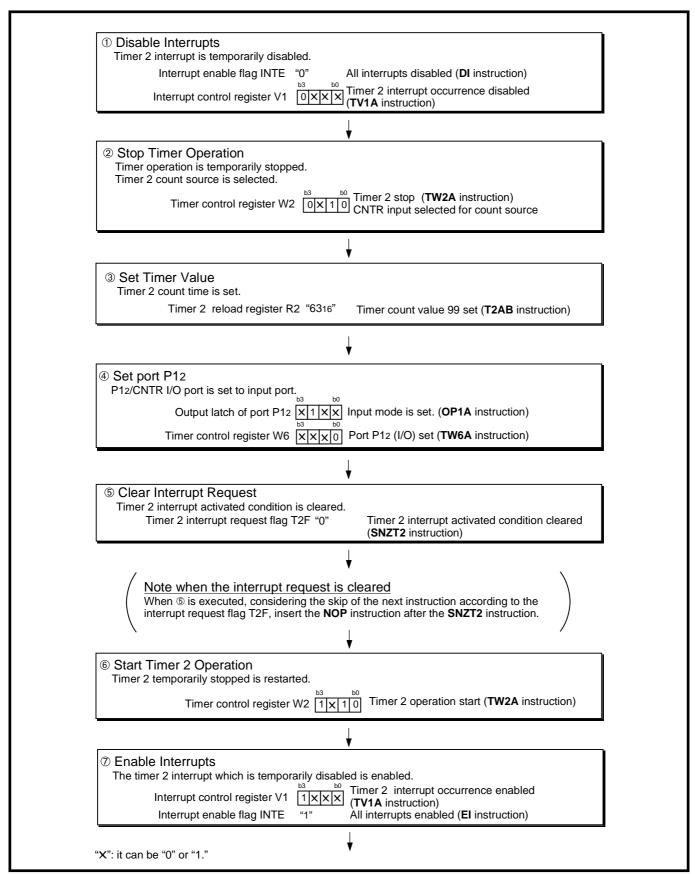


Fig. 2.3.5 CNTR input setting example

However, specify the pulse width input to CNTR pin. Refer to section "2.3.4 Notes on use" for the timer external input period condition.

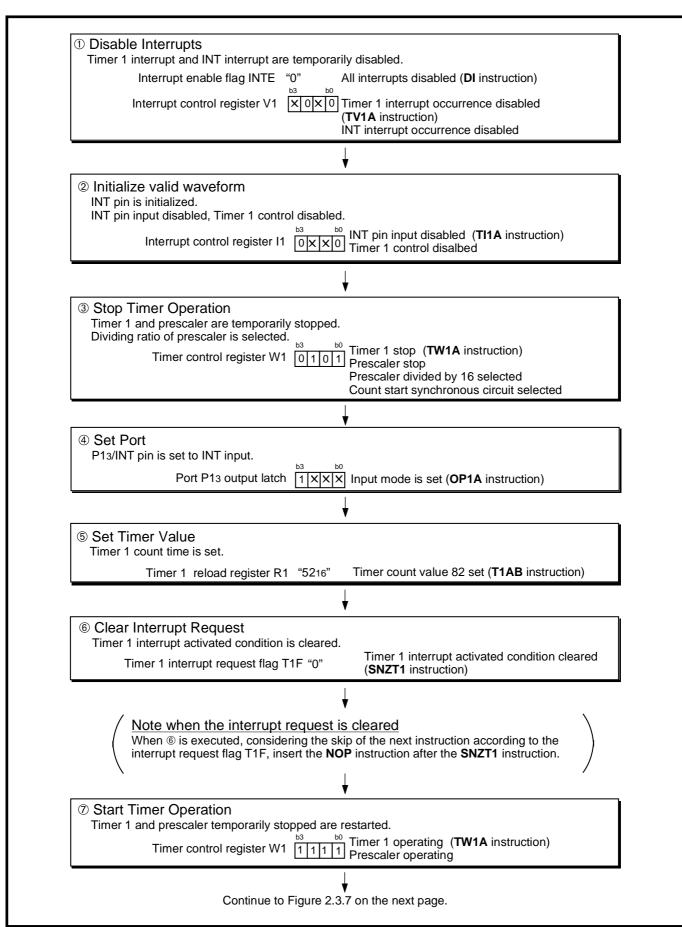


Fig. 2.3.6 Timer start by external input setting example (1)

4506 Group 2.3 Timers

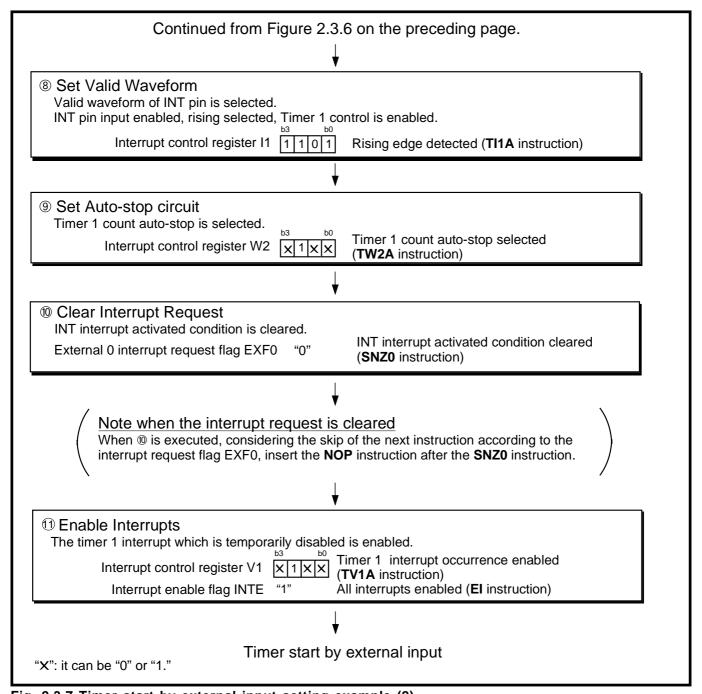


Fig. 2.3.7 Timer start by external input setting example (2)

4506 Group 2.3 Timers

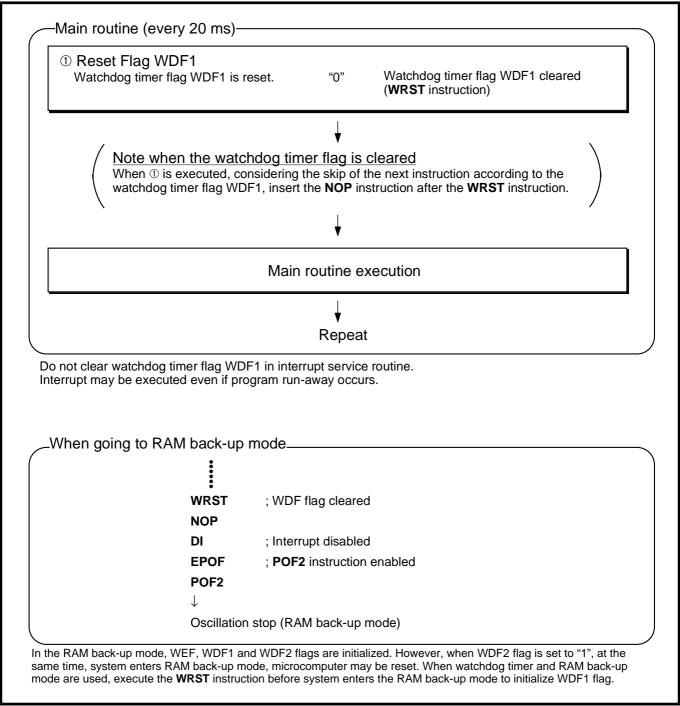


Fig. 2.3.8 Watchdog timer setting example

2.3.4 Notes on use

(1) Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

(2) Count source

Stop timer 1 or 2 counting to change its count source.

(3) Reading the count values

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

4506 Group 2.3 Timers

(4) Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

(5) Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflow.

(6) Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

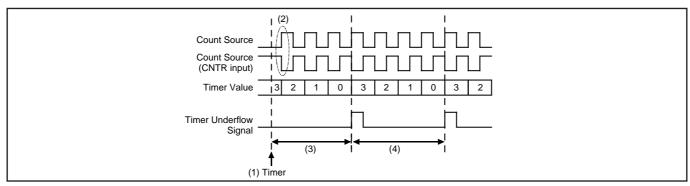


Fig. 2.3.9 Timer count start timing and count time when operation starts (T1, T2)

(7) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not
 using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(8) Pulse width input to CNTR pin

Table 2.3.5 shows the recommended operating condition of pulse width input to CNTR pin.

Table 2.3.5 Recommended operating condition of pulse width input to CNTR pin

Parameter	Condition		Unit		
r didilietei	Condition	Min.	Тур.	Max.	Offic
Timer external input period	High-speed mode	3/f(XIN)			
("H" and "L" pulse width)	Middle-speed mode	6/f(XIN)			s
	Low-speed mode	12/f(XIN)			3
	Default mode	24/f(XIN)			

2.4 A/D converter

The 4506 Group has a 2-channel A/D converter with the 10-bit successive comparison method.

This A/D converter can also be used as a comparator to compare analog voltages input from the analog input pin with preset values.

This section describes the related registers, application examples using the A/D converter and notes.

Figure 2.4.1 shows the A/D converter block diagram.

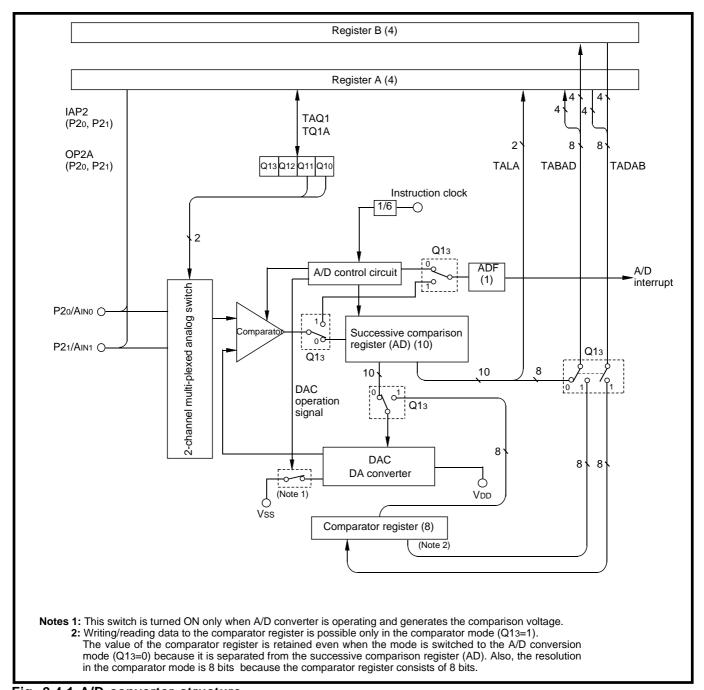


Fig. 2.4.1 A/D converter structure

2-34

4506 Group 2.4 A/D converter

2.4.1 Related registers

(1) A/D control register Q1

A/D operation mode control bit and analog input pin selection bits are assigned to register Q1. Set the contents of this register through register A with the **TQ1A** instruction. The **TAQ1** instruction can be used to transfer the contents of register Q1 to register A. Table 2.4.1 shows the A/D control register Q1.

Table 2.4.1 A/D control register Q1

A/D control register Q1		at reset		et: 00002 at RAM back-up: state retained R/V	N
Q13	A/D operation mode control bit	0 A/D conver		A/D conversion mode	
<u> </u>	Detailor mode control bit	,	1	Comparator mode	
Q12	Not used	(0	This bit has no function, but read/write is enabled.	
Q1Z	Not used		1	This bit has no function, but read/write is enabled.	
		Q11	Q1 0	Selected pins	
Q11		0	0	AIN0	
	Analog input pin selection bits	0	1	AIN1	
Q10		1	0	Not available	
		1	1	Not available	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2.4.2 A/D converter application examples

(1) A/D conversion mode

Outline: Analog input signal from a sensor can be converted into digital values.

Specifications: Analog voltage values from a sensor is converted into digital values by using a 10-bit successive comparison method. Use the AINO pin for this analog input.

Figure 2.4.2 shows the A/D conversion mode setting example.

^{2:} When A/D converter is used, Q12 is not used.

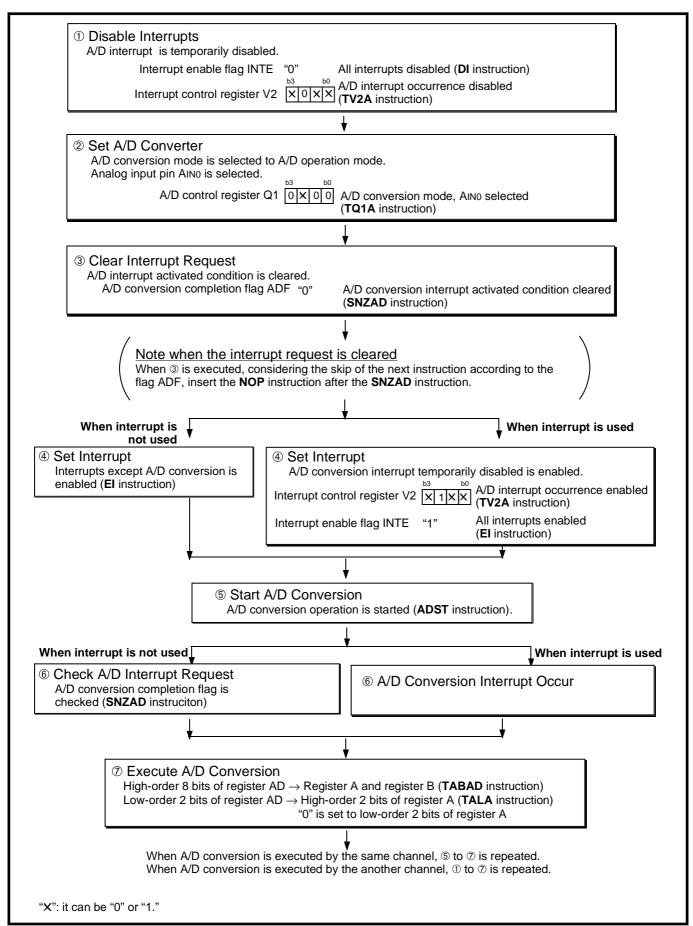
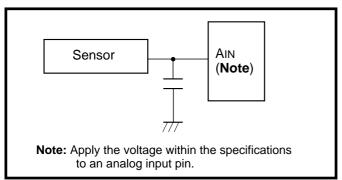


Fig. 2.4.2 A/D conversion mode setting example

2.4.3 Notes on use

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the **ADST** instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 2.4.3 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 2.4.4. In addition, test the application products sufficiently.

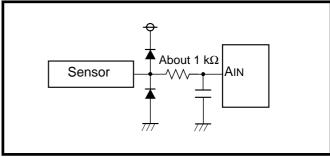
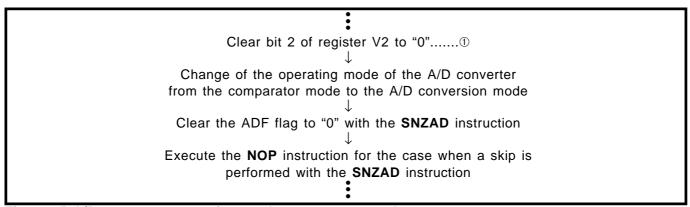


Fig. 2.4.4 Analog input external circuit example-2


Fig. 2.4.3 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode with bit 3 of register Q1 (refer to Figure 2.4.5①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the **SNZAD** instruction to clear the ADF flag.

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with bit 3 of register Q1 during operating the A/D converter.

RENESAS

Fig. 2.4.5 A/D converter operating mode program example

(4) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(5) Analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as P2 I/O. Accordingly, when any of them are used as these ports and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

(6) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(7) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 2.4.2 shows the recommended operating conditions when using A/D converter.

Table 2.4.2 Recommended operating conditions (when using A/D converter)

Parameter	Condition		Limits		Unit	
i didilietei	Condition	Min.	Тур.	Max.		
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)		0.1		4.4	
(at ceramic resonance)	VDD = 2.7 to 5.5 V (middle-speed mode)		0.1		2.2	
	VDD = 2.7 to 5.5 V (low-speed mode)		0.1		1.1	
	VDD = 2.7 to 5.5 V (default mode)	0.1		0.5		
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)	0.1		4.4		
(at RC oscillation) (Note)	VDD = 2.7 to 5.5 V (middle-speed mode)		0.1		2.2	MHz
	VDD = 2.7 to 5.5 V (low-speed mode)		0.1		1.1	101112
	VDD = 2.7 to 5.5 V (default mode)	VDD = 2.7 to 5.5 V (default mode)				
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)		0.1		3.2	
(ceramic resonance	VDD = 2.7 to 5.5 V (middle-speed mode)	Duty	0.1		1.6	
selected, at external	VDD = 2.7 to 5.5 V (low-speed mode)	0.1		0.8		
clock input)	VDD = 2.7 to 5.5 V (default mode)		0.1		0.4	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

4506 Group 2.5 Reset

2.5 Reset

System reset is performed by applying "L" level to the RESET pin for 1 machine cycle or more when the following conditions are satisfied:

- the value of supply voltage is the minimum value or more of the recommended operating conditions
- oscillation is stabilized.

Then when "H" level is applied to RESET pin, the software starts from address 0 in page 0 after elapsing of the internal oscillation stabilizing time (On-chip oscillator (internal oscillator) clock is counted for 5359 times). Figure 2.5.2 shows the oscillation stabilizing time.

2.5.1 Reset circuit

(1) Power-on reset

Reset can be performed automatically at power on (power-on re-set) by connecting a diode and a capacitor to RESET pin. Connect RESET pin and the external circuit at the shortest distance.

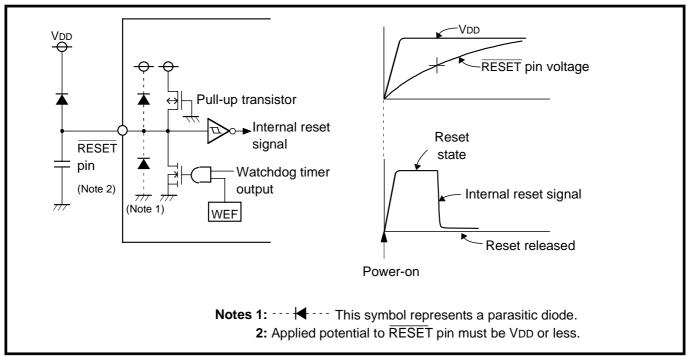


Fig. 2.5.1 Structure of reset pin and its peripherals, and power-on reset operation

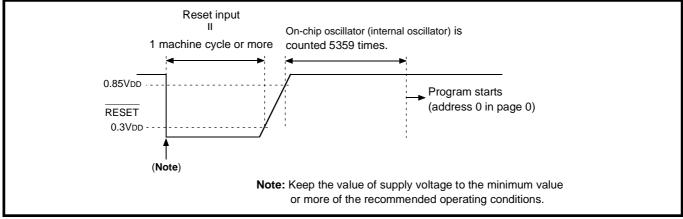


Fig. 2.5.2 Oscillation stabilizing time after system is released from reset

4506 Group 2.5 Reset

2.5.2 Internal state at reset

Figure 2.5.3 shows the internal state at reset. The contents of timers, registers, flags and RAM other than shown in Figure 2.5.3 are undefined, so that set them to initial values.

Program counter (PC)
Address 0 in page 0 is set to program counter.
• Interrupt enable flag (INTE)
Power down flag (P)
• External 0 interrupt request flag (EXF0)
• Interrupt control register V1
• Interrupt control register V2
• Interrupt control register I1
• Timer 1 interrupt request flag (T1F)
• Timer 2 interrupt request flag (T2F)
A/D conversion completion flag ADF
Watchdog timer flags (WDF1, WDF2)
Watchdog timer enable flag (WEF)
• Timer control register W1
• Timer control register W2
• Timer control register W6
Clock control register MR
Key-on wakeup control register K0
Key-on wakeup control register K1 0 0 0 0
Key-on wakeup control register K2
Pull-up control register PU0 0 0 0 0
Pull-up control register PU1 0 0 0 0
Pull-up control register PU2 0 0 0 0
• A/D control register Q1
• Carry flag (CY)0
• Register A
• Register B
Register DX X X X
• Register E
• Register X
• Register Y
• Register ZX X
• Stack pointer (SP)
Operation source clock On-chip oscillator (operation state)
Ceramic resonator Operation state
• RC oscillation circuit Stop state
"X" represents undefined.
X represents undermed.

Fig. 2.5.3 Internal state at reset

2.5.3 Notes on use

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

2.6 RAM back-up

2.6.1 RAM back-up mode

The system enters RAM back-up mode when the **POF2** instruction is executed after the **EPOF** instruction is executed. Table 2.6.1 shows the function and state retained at RAM back-up mode. Also, Table 2.6.2 shows the return source from this state.

(1) RAM back-up mode

As oscillation stops with RAM, the state of reset circuit retained, current dissipation can be reduced without losing the contents of RAM.

Table 2.6.1 Functions and states retained at RAM back-up mode

Function	RAM back-up POF2
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	X
Contents of RAM	0
Port level	(Note 5)
Selected oscillation circuit	0
Timer control register W1	X
Timer control registers W2, W6	0
Clock control register MR	X
Interrupt control registers V1, V2	X
Interrupt control register I1	0
Timer 1 function	X
Timer 2 function	(Note 3)
A/D function	X
Pull-up control registers PU0-PU2	0
Key-on wakeup control registers K0-K2	0
A/D control register Q1	0
External 0 interrupt request flag (EXF0)	X
Timer 1 interrupt request flag (T1F)	X
Timer 2 interrupt request flag (T2F)	(Note 3)
A/D conversion completion flag (ADF)	X
Watchdog timer flag (WDF1)	× (Note 4)
Watchdog timer enable flag (WEF)	X
16-bit timer (WDT)	× (Note 4)
Interrupt enable flag (INTE)	X

- **Notes 1:** "O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
 - 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
 - 3: The state of the timer flag WDF1 is undefined.
 - **4:** Initialize the watchdog timer flag WDF1 with the **WRST** instruction, and then execute the **POF2** instruction.
 - **5:** As for the D₂/C pin, the output latch of port C is set to "1" at the RAM back-up. However, the output latch of port D₂ is retained.

As for the other ports, their output levels are retained at the RAM back-up.

Table 2.6.2 Return source and return condition

F	Return source	Return condition	Remarks
	Port P0	Return by an external "L" level input.	Key-on wakeup function can be selected with
	Port P1 (Note)		every one port. Set the port using the key-on
dn	Port P2		wakeup function to "H" level before going into
wakeup nal	Port D2/C		the RAM back-up state.
wa	Port D3/K		
nal sig	Port P13/INT	Return by an external "H" level or "L"	Select the return level ("L" level or "H" level)
Exter	(Note)	level input. The return level can be	with the bit 2 of register I1 according to the
ш		selected by register I12. When the	external state before going into the RAM back-
		return level is input, the EXF0 flag is	up state.
		not set.	

Note: When the bit 3 (K13) of the key-on wakeup control register K1 is "0", the key-on wakeup ("H" level or "L" level) of INT pin is set. When the K13 is "1", the key-on wakeup ("L" level) of port P13 is set.

(2) Start condition identification

When system returns from both RAM back-up mode and reset, software is started from address 0 in page 0.

The start condition (warm start or cold start) can be identified by examining the state of the power down flag (P) with the **SNZP** instruction.

Table 2.6.3 Start condition identification

REJ09B0194-0201

Return condition	P flag
External wakeup signal input	1
Reset	0

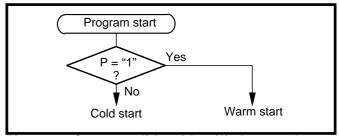


Fig. 2.6.1 Start condition identified example

2.6.2 Related registers

(1) Key-on wakeup control register K0

Register K0 controls the ON/OFF of the key-on wakeup function of ports P00–P03. Set the contents of this register through register A with the **TK0A** instruction. The contents of register K0 is transferred to register A with the **TAK0** instruction. Table 2.6.4 shows the key-on wakeup control register K0.

Table 2.6.4 Key-on wakeup control register K0

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W	
K03	Port P03	0	0 Key-on wakeup invalid			
NU3	key-on wakeup control bit	1	Key-on wakeup valid			
K02	Port P02	0	Key-on wakeup invalid			
KU2	key-on wakeup control bit	1	Key-on wakeup valid			
K01	Port P01	0	Key-on wak	ceup invalid		
KUT	key-on wakeup control bit	1	Key-on wak	ceup valid		
K00	Port P00	0	Key-on wak	ceup invalid		
1.00	key-on wakeup control bit	1	Key-on wak	ceup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

(2) Key-on wakeup control register K1

Register K1 controls the ON/OFF of the key-on wakeup function of ports P10–P13. Set the contents of this register through register A with the **TK1A** instruction. The contents of register K1 is transferred to register A with the **TAK1** instruction. Table 2.6.5 shows the key-on wakeup control register K1.

Table 2.6.5 Key-on wakeup control register K1

Key-on wakeup control register K1		at res	et: 00002	at RAM back-up : state retained	R/W
	Port P13/INT	0	P13 key-on	wakeup invalid/INT pin key-on wak	eup valid
K13	key-on wakeup control bit	1	P13 key-on	wakeup valid/INT pin key-on wakeu	ıp invalid
V10	Port P12/CNTR	0	Key-on wak	ceup invalid	
K12	key-on wakeup control bit	1	Key-on wak	ceup valid	
K11	Port P11	0	Key-on wak	ceup invalid	
K I I	key-on wakeup control bit	1	Key-on wak	ceup valid	
K10	Port P10	0	Key-on wak	ceup invalid	
K10	key-on wakeup control bit	1	Key-on wak	ceup valid	

Note: "R" represents read enabled, and "W" represents write enabled.

(3) Key-on wakeup control register K2

Register K2 controls the ON/OFF of the key-on wakeup function of ports P20, P21, D2/C and D3/K. Set the contents of this register through register A with the **TK2A** instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.6.6 shows the key-on wakeup control register K2.

Table 2.6.6 Key-on wakeup control register K2

Key-	on wakeup control register K2	at reset: 00002		at RAM back-up : state retained	R/W	
K23	Port D3/K	0	0 Key-on wakeup invalid			
N23	key-on wakeup control bit	1	1 Key-on wakeup valid			
K22	Port D2/C	0	0 Key-on wakeup invalid			
NZ2	key-on wakeup control bit	1	Key-on wakeup valid			
K21	Port P21/AIN1	0	Key-on wak	ceup invalid		
NZ1	key-on wakeup control bit	1	Key-on wak	ceup valid		
K20	Port P20/AIN0	0	Key-on wak	ceup invalid		
N20	key-on wakeup control bit	1	Key-on wak	ceup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Pull-up control register PU0

Register PU0 controls the ON/OFF of the ports P00–P03 pull-up transistor. Set the contents of this register through register A with the **TPU0A** instruction. Table 2.6.7 shows the pull-up control register PU0.

Table 2.6.7 Pull-up control register PU0

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W
DLIO	Port P03	0	0 Pull-up transistor OFF		
PU03	pull-up transistor control bit	1	1 Pull-up transistor ON		
PU02	Port P02	0	0 Pull-up transistor OFF		
PU02	pull-up transistor control bit	1	1 Pull-up transistor ON		
PU01	Port P01	0	Pull-up tran	sistor OFF	
P001	pull-up transistor control bit	1	Pull-up tran	sistor ON	
PU00	Port P00	0	Pull-up tran	sistor OFF	
- 000	pull-up transistor control bit	1	Pull-up tran	sistor ON	

Note: "W" represents write enabled.

(5) Pull-up control register PU1

Register PU1 controls the ON/OFF of the ports P10-P13 pull-up transistor. Set the contents of this register through register A with the **TPU1A** instruction. Table 2.6.8 shows the pull-up control register PU1.

Table 2.6.8 Pull-up control register PU1

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	W	
PU13	Port P13/INT	0	Pull-up tran	sistor OFF		
PU 13	pull-up transistor control bit	1	1 Pull-up transistor ON			
PU12	Port P12/CNTR	0	0 Pull-up transistor OFF			
PU 12	pull-up transistor control bit	1	1 Pull-up transistor ON			
DUIA	Port P11	0	Pull-up tran	sistor OFF		
PU11	pull-up transistor control bit	1	Pull-up tran	sistor ON		
PU10	Port P10	0	Pull-up tran	sistor OFF		
FU10	pull-up transistor control bit	1	Pull-up tran	sistor ON		

Note: "W" represents write enabled.

(6) Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P20, P21, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the **TPU2A** instruction. Table 2.6.9 shows the pull-up control register PU2.

Table 2.6.9 Pull-up control register PU2

Pt	ull-up control register PU2	at res	et: 00002	at RAM back-up : state retained	W		
PU23	Port D3/K	0	0 Pull-up transistor OFF				
FU23	pull-up transistor control bit	1	Pull-up transistor ON				
PU22	Port D2/C	0	0 Pull-up transistor OFF				
PU22	pull-up transistor control bit	1	Pull-up tran	sistor ON			
PU21	Port P21/AIN1	0	Pull-up tran	sistor OFF			
FU21	pull-up transistor control bit	1	Pull-up tran	sistor ON			
PU20	Port P20/AIN0	0	Pull-up transistor OFF				
F U20	pull-up transistor control bit	1	Pull-up tran	sistor ON			

Note: "W" represents write enabled.

(7) Interrupt control register I1

The INT pin timer 1 control enable bit is assigned to bit 0, INT pin edge detection circuit control bit is assigned to bit 1, interrupt valid waveform for INT pin/return level selection bit is assigned to bit 2 and INT pin input control bit is assigned to bit 3.

Set the contents of this register through register A with the TI1A instruction.

In addition, the **TAI1** instruction can be used to transfer the contents of register I1 to register A. Table 2.6.10 shows the interrupt control register I1.

Table 2.6.10 Interrupt control register I1

ı	nterrupt control register I1	at res	et: 00002	at RAM back-up : state retained	R/W		
I13	INT his input control bit (Note 2)	0	INT pin input disabled				
113	INT pin input control bit (Note 2)	1	INT pin inp	ut enabled			
	Interrupt valid waveform for INT I12 pin/return level selection bit		Falling waveform ("L" level of INT pin is recognized with				
110			the SNZIO instruction)/"L" level				
112	'	4	Rising waveform ("H" level of INT pin is recognized with				
	(Note 2)	1	the SNZI0 instruction)/"H" level				
	INT pin edge detection circuit	0	One-sided	edge detected			
111	control bit	1	Both edges	detected			
I10	INT pin	0	Disabled				
110	timer 1 control enable bit	1	Enabled				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, after the one instruction is executed, clear EXF0 flag with the SNZ0 instruction while the bit 0 (V10) of register V1 is "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

2.6.3 Notes on use

(1) Key-on wakeup function

After setting ports (P0, P1, D2/C, D3/K, P20/AIN0 and P21/AIN1 specified with register K0–K2) which key-on wakeup function is valid to "H," execute the **P0F2** instruction.

If one of ports which key-on wakeup function is valid is in the "L" level state, system returns from the RAM back-up after the **POF2** instruction is executed.

(2) POF2 instruction

Execute the **POF2** instruction immediately after executing the **EPOF** instruction to enter the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF2** instruction.

(3) Return from RAM back-up

After system returns from RAM back-up, set the undefined registers and flags.

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Watchdog timer

The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(5) P13/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

(6) External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (**POF2** instruction) cannot be used.

2.7 Oscillation circuit

The 4506 Group has an internal oscillation circuit to produce the clock required for microcomputer operation. The ceramic resonance and the RC oscillation can be used for the source clock.

After system is released from reset, the 4506 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

2.7.1 Oscillation circuit

(1) f(XIN) clock generating circuit

The ceramic resonator or RC oscillation can be used for the source oscillation (f(XIN)) of the MCU.

After system is released from reset, the 4506 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the **CMCK** instruction. When the RC oscillation is used, execute the **CRCK** instruction. The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the **CMCK** or the **CRCK** instruction is not executed in program, the 4506 Group operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 2.7.2).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

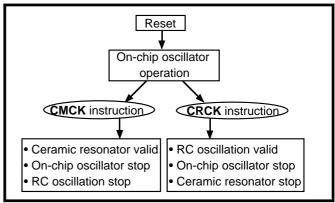


Fig. 2.7.1 Switch to ceramic resonance/RC oscillation

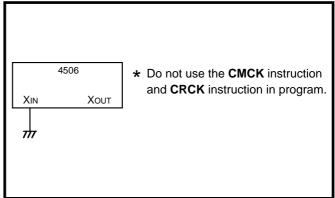


Fig. 2.7.2 Handling of XIN and XOUT when operating on-chip oscillator

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the **CMCK** instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 2.7.3).

As for the oscillation frequency, do not exceed the values shown in the Table 2.7.1.

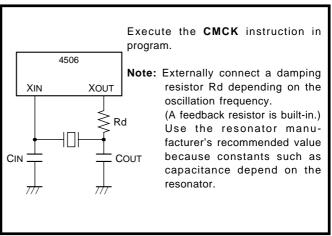


Fig. 2.7.3 Ceramic resonator external circuit

Table 2.7.1 Maximum value of oscillation frequency and supply voltage

Supply voltage	(S	System clock)	Oscillation frequency
2.7 V to 5.5 V	(f(XIN)) Hi	igh-speed mode	4.4 MHz
2.0 V to 5.5 V	(f(XIN)) Hi	igh-speed mode	2.2 MHz
	(f(XIN)/2) M	liddle-speed mode	4.4 MHz
	(f(XIN)/4) Lo	ow-speed mode	
	(f(XIN)/8) De	efault mode	

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the **CRCK** instruction (Figure 2.7.4).

The frequency is affected by a capacitor, a resistor and a microcomputer.

So, set the constants within the range of the frequency limits.

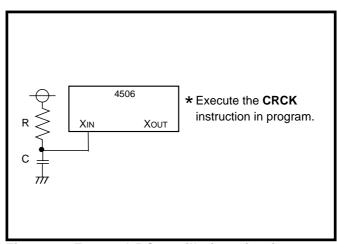


Fig. 2.7.4 External RC oscillation circuit

2.7.2 Oscillation operation

System clock is supplied to CPU and peripheral device as the standard clock for the microcomputer operation. For the 4506 Group, the clock supplied from the on-chip oscillator (internal oscillator) or the ceramic resonance circuit, RC oscillation circuit is selected from the high-speed mode (f(XIN)), middlespeed mode (f(XIN)/2), low-speed mode (f(XIN)/4) or default mode (f(XIN)/8) with the register MR. Figure 2.7.5 shows the structure of the clock control circuit.

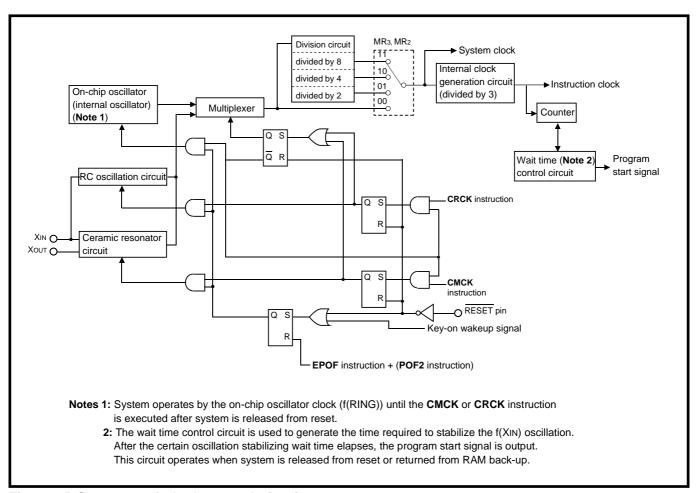


Fig. 2.7.5 Structure of clock control circuit

2.7.3 Notes on use

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(3) External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (**POF2** instruction) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

CHAPTER 3

APPENDIX

- 3.1 Electrical characteristics
- 3.2 Typical characteristics
- 3.3 List of precautions
- 3.4 Notes on noise
- 3.5 Package outline

3-2

3.1 Electrical characteristics

3.1.1 Absolute maximum ratings

Table 3.1.1 Absolute maximum ratings

	<u> </u>			
Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, D0, D1, D2/C, D3/K,		-0.3 to VDD+0.3	V
	RESET, XIN			
Vı	Input voltage AIN0-AIN1		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0, D1, D2/C, D3/K,		-0.3 to VDD+0.3	V
	RESET	Output transistors in cut-off state		
Vo	Output voltage XouT		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

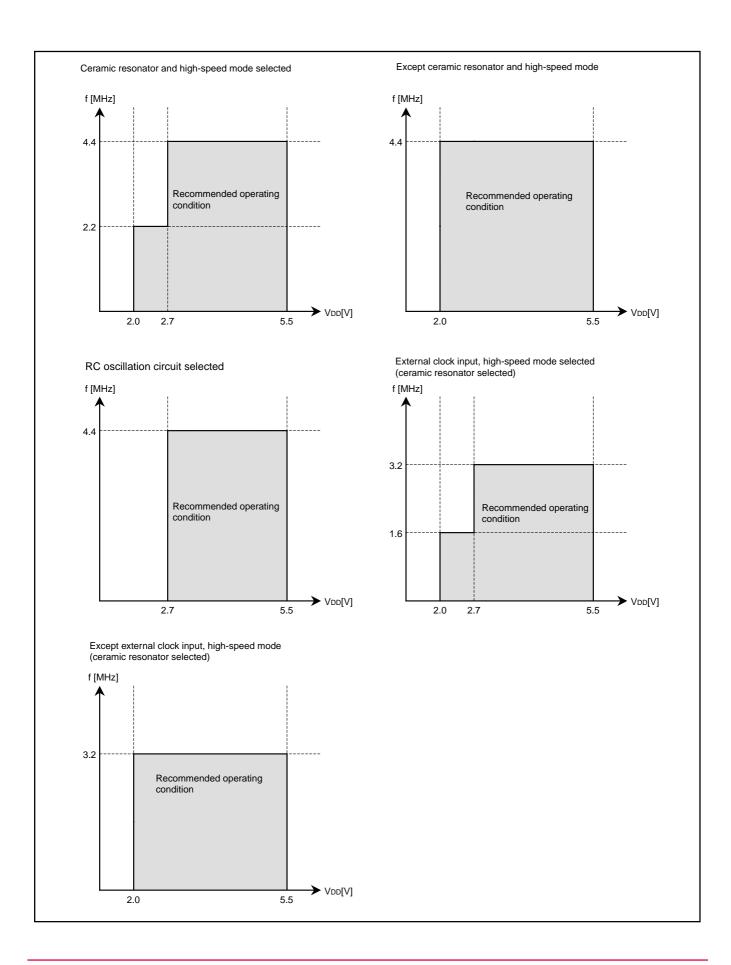

3.1.2 Recommended operating conditions

Table 3.1.2 Recommended operating conditions 1

(Ta = -20 °C to 85 °C, VDD = 2.0 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditi	one		Limits		Unit
Symbol				Min.	Тур.	Max.	
VDD	Supply voltage	High-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.7		5.5	V
	(with a ceramic resonator)	Middle-speed mode	$f(XIN) \le 4.4 MHz$	2.0		5.5	
		Low-speed mode					
		Default mode					
VDD	Supply voltage	High-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.7		5.5	V
	(with RC oscillation)	Middle-speed mode					
		Low-speed mode					
		Default mode					
VRAM	RAM back-up voltage	(at RAM back-up)		1.8			V
Vss	Supply voltage				0		V
ViH	"H" level input voltage	P0, P1, P2, D0-D3, XIN		0.8Vpp		VDD	V
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V
ViH	"H" level input voltage	C, K	VDD = 4.0 to 5.5 V	0.5VDD		VDD	V
			VDD = 2.0 to 5.5 V	0.7Vdd		VDD	1
VIH	"H" level input voltage	CNTR, INT		0.85Vpd		VDD	V
VIL	"L" level input voltage	P0, P1, P2, D0-D3, XIN		0		0.2VDD	V
VIL	"L" level input voltage	C, K		0		0.16VDD	V
VIL	"L" level input voltage	RESET		0		0.3VDD	V
VIL	"L" level input voltage	CNTR, INT		0		0.15VDD	V
IoL(peak)	"L" level peak output current	P2, RESET	VDD = 5.0 V			10	mA
			VDD = 3.0 V			4.0	1
IOL(peak)	"L" level peak output current	D0, D1	VDD = 5.0 V			40	mA
			VDD = 3.0 V			30	1
IOL(peak)	"L" level peak output current	D2/C, D3/K	VDD = 5.0 V			24	mA
			VDD = 3.0 V			12	1
IoL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA
			VDD = 3.0 V			12	1
IoL(avg)	"L" level average output current	P2, RESET (Note)	VDD = 5.0 V			5.0	mA
			VDD = 3.0 V			2.0	1
IoL(avg)	"L" level average output current	Do, D1 (Note)	VDD = 5.0 V			30	mA
, ,			VDD = 3.0 V			15	1
IoL(avg)	"L" level average output current	D2/C, D3/K (Note)	VDD = 5.0 V			15	mA
, ,	- ,		VDD = 3.0 V			7.0	1
IoL(avg)	"L" level average output current	P0, P1 (Note)	VDD = 5.0 V			12	mA
, ,		, ,	VDD = 3.0 V			6.0	1
Σlo _L (avg)	"L" level total average current	P2, D, RESET				80	mA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · · · · · · · · · · · · · · · · · ·	P0, P1				80	1

Note: The average output current (IOH, IOL) is the average value during 100 ms.

Table 3.1.3 Recommended operating conditions 2

(Ta = -20 °C to 85 °C, VDD = 2.0 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Con	ditions		Limits		Unit
Symbol	Faianetei	Conc	uitions	Min.	Тур.	Max.	0111
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			4.4	MHz
	(with a ceramic resonator)		VDD = 2.0 V to 5.5 V			2.2	1
		Middle-speed mode	VDD = 2.0 V to 5.5 V			4.4	1
		Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			4.4	MHz
	(with RC oscillation) (Note)	Middle-speed mode					
		Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode	VDD = 2.7 V to 5.5 V			3.2	MHz
	(with a ceramic resonator selected,		VDD = 2.0 V to 5.5 V			1.6	1
	external clock input)	Middle-speed mode	VDD = 2.0 V to 5.5 V			3.2	
		Low-speed mode					
		Default mode					
Δ f(XIN)	Oscillation frequency error	VDD = 5.0 V ±10 %, Ta =	= 25 °C, –20 to 85 °C			±17	%
	(at RC oscillation, error value of						
	exteranal R, C not included)	VDD = 3.0 V ±10 %, Ta =	= 25 °C, −20 to 85 °C			±17	
	Note: use 30 pF capacitor and vary external R						
f(CNTR)	Timer external input frequency	High-speed mode				f(XIN)/6	Hz
		Middle-speed mode				f(XIN)/12	
		Low-speed mode				f(XIN)/24]
		Default mode				f(XIN)/48	
tw(CNTR)	Timer external input period	High-speed mode		3/f(XIN)			s
	("H" and "L" pulse width)	Middle-speed mode		6/f(XIN)			
		Low-speed mode		12/f(XIN)			
		Default mode		24/f(XIN)	•		

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.1.3 Electrical characteristics

Table 3.1.4 Electrical characteristics (Ta = -20 °C to 85 °C, VDD = 2.0 to 5.5 V, unless otherwise noted)

"L" level output v	Parameter	1621	conditions	1	1	1	 Unit
"L" level output v				Min.	Тур.	Max.	5.11
	voltage	VDD = 5.0 V	IOL = 12 mA			Max. 2.0 0.9 0.9 0.6 2.0 0.6 0.9 2.0 0.9 2.0 0.9 2.0 0.9 1.0 1.0 1.0 5.0 3.9 3.3 3.0 1.5 1.2 1.1	V
P0, P1			IOL = 4.0 mA			0.9	
		VDD = 3.0 V	IOL = 6.0 mA			0.9	
			IOL = 2.0 mA			0.6	
"L" level output v	voltage	VDD = 5.0 V	IOL = 5.0 mA			2.0	V
P2, RESET			IOL = 1.0 mA			0.6	
		VDD = 3.0 V	IOL = 2.0 mA			0.9	
"L" level output v	voltage	VDD = 5.0 V	IOL = 30 mA			2.0	V
Do, D1			IOL = 10 mA			0.9	
		VDD = 3.0 V	IOL = 15 mA			2.0	
			IOL = 5.0 mA			0.9	
"L" level output v	voltage	VDD = 5.0 V	IOL = 15 mA			2.0	V
D2/C, D3/K			IOL = 5.0 mA			0.9	
		VDD = 3.0 V	IOL = 9.0 mA			2.0	1
			IOL = 3.0 mA			0.9	1
"H" level input cu	urrent	VI = VDD	'			1.0	μΑ
P0, P1, P2, RES	ET						
"H" level input cu	urrent	VI = VDD				1.0	μA
Do, D1, D2/C, D3	s/K						
		VI = 0 V P0, P1, P2 No pull-up		-1.0			μΑ
•							'
	ırrent	VI = 0 V. D2/C. D3/K. No pull-up		-1.0			μΑ
•			•				'
		VDD = 5.0 V	High-speed mode		1.7	5.0	m/
		f(XIN) = 4.0 MHz			1.3	3.9	1
	,		· · · · · · · · · · · · · · · · · · ·		1.1		1
			Default mode				1
		VDD = 3.0 V	High-speed mode				1
							1
							1
							1
	at RAM back-up mode	Ta = 25 °C	20.00				μΑ
	· ·				0		
	STEELER STOCKERS						1
Pull-up resistor v	/alue		Vpp = 5.0 V	30	60		kΩ
<u> </u>	<u> </u>	VDD = 5.0 V	V D D = 0.0 V	00		000	V
riyotoroolo livi, t	J. 1.1.1.					-	1
Hyetaracie DECE							V
TIYSIGIGSIS RESE	.1						"
On chin oscillata	or clock froguency			1.0		3.0	MH
•	i Gook frequency						1
	P2, RESET "L" level output v D0, D1 "L" level output v D2/C, D3/K "H" level input cu P0, P1, P2, RES "H" level input cu P0, P1, P2 "L" level input cu P0, P1, P2 "L" level input cu P0, P1, D2/C, D3 Supply current Pull-up resistor v P0, P1, P2, D2/C Hysteresis RESE On-chip oscillato (Note 2)	"L" level output voltage D0, D1 "L" level output voltage D2/C, D3/K "H" level input current P0, P1, P2, RESET "H" level input current D0, D1, D2/C, D3/K "L" level input current P0, P1, P2 "L" level input current D0, D1, D2/C, D3/K Supply current At active mode (Note 1) at RAM back-up mode (POF2 instruction execution) Pull-up resistor value P0, P1, P2, D2/C, D3/K, RESET Hysteresis INT, CNTR Hysteresis RESET On-chip oscillator clock frequency (Note 2)	P2, RESET VDD = 3.0 V		VDD = 5.0 V	"L" level output voltage P2, RESET VDD = 3.0 V IDL = 2.0 mA VDD = 3.0 V IDL = 2.0 mA IDL = 1.0 mA VDD = 3.0 V IDL = 3.0 MA IDL = 1.0 mA IDL = 5.0 m	"L" level output voltage P2, RESET VDD = 5.0 V

Notes 1: When the A/D converter is used, the A/D operation current (IADD) is included.

^{2:} When system operates by the on-chip oscillator, the system clock frequency is the on-chip oscillator clock divided by the dividing ratio selected with register MR.

3.1.4 A/D converter recommended operating conditions

Table 3.1.5 A/D converter recommended operating conditions

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

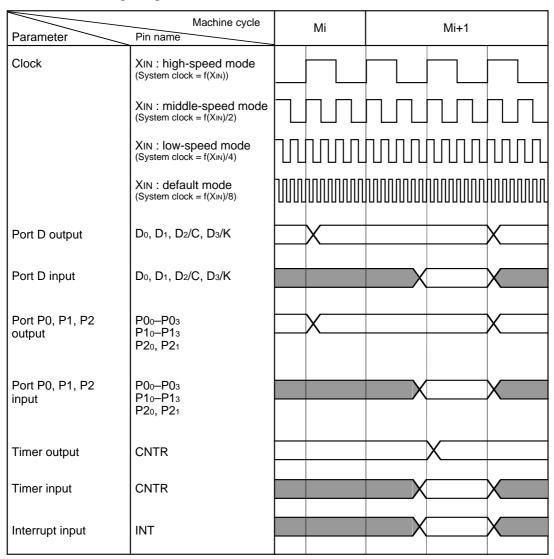
Symbol	Parameter	C	anditions		Limits		Unit
Symbol	Farameter	Min. Typ. Max. Ta = 25 °C 2.7 5.5 Ta = -20 °C to 85 °C 3.0 5.5 VDD = 2.7 V to 5.5 V High-speed mode 0.1 Middle-speed mode 0.2	Offic				
VDD	Supply voltage	Ta = 25 °C	a = 25 °C			5.5	V
		Ta = -20 °C to 85 °C		3.0		5.5	
VIA	Analog input voltage			0		VDD+2LSB	V
f(XIN)	Oscillation frequency	VDD = 2.7 V to 5.5 V	High-speed mode	0.1			MHz
			Middle-speed mode	0.2			
			Low-speed mode	0.4			
			Default mode	0.8			

Table 3.1.6 A/D converter characteristcs

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter		est conditions		Limits		Unit
Symbol	Farameter	10	Min.	Тур.	Max.	Offic	
_	Resolution					10	bits
_	Linearity error	Ta = 25 °C, VDD =	2.7 V to 5.5 V			±2.0	LSB
		Ta = −25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
_	Differential non-linearity error	Ta = 25 °C, VDD =	2.7 V to 5.5 V			±0.9	LSB
		Ta = −25 °C to 85	°C, VDD = 3.0 V to 5.5 V				
V ₀ T	Zero transition voltage	VDD = 5.12 V		10	20	30	mV
		VDD = 3.072 V		3	9	10 ±2.0 ±0.9 30 15 5135 3075 0.9 0.3 46.5 93.0 186 372 8 ±20 ±15 6.0 12 24	1
VFST	Full-scale transition voltage	VDD = 5.12 V		5115	5125	5135	mV
		VDD = 3.072 V		3063	3069	3075	
IAdd	A/D operating current (Note 1)	VDD = 5.0 V			0.3	.3 0.9	mA
		VDD = 3.0 V			0.1	0.3	
TCONV	A/D conversion time	f(XIN) = 4.0 MHz	High-speed mode				μs
			Middle-speed mode			93.0	1
			Low-speed mode			186	1
			Default mode			372	1
_	Comparator resolution					8	bits
_	Comparator error (Note 2)	VDD = 5.12 V				±20	mV
		VDD = 3.072 V				±15	1
_	Comparator comparison time	f(XIN) = 4.0 MHz	High-speed mode			6.0	μs
			Middle-speed mode			12	
			Low-speed mode			24	1
			Default mode			48	7

Notes 1: When the A/D converter is used, the IADD is included to IDD.


Logic value of comparison voltage V_{ref}—

$$V_{ref} = \frac{V_{DD}}{256} \times r$$

n = Value of register AD (n = 0 to 255)

^{2:} As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

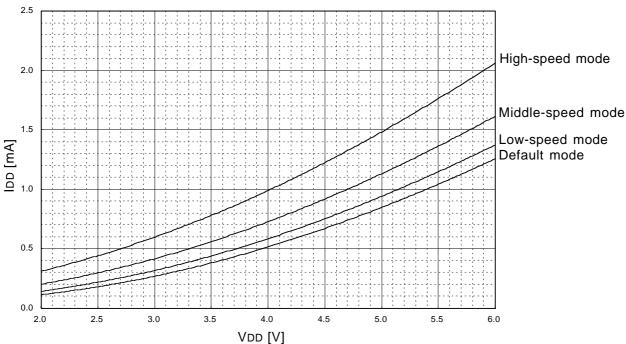
3.1.5 Basic timing diagram

3.2 Typical characteristics

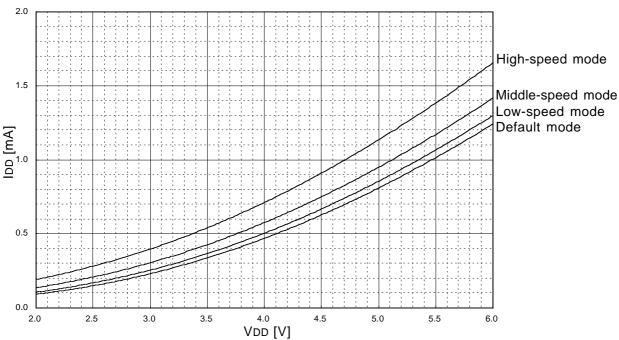
The data described below are characteristic examples for the 4506 Group.

Unless otherwise noted, the characteristics for Mask ROM version are shown here.

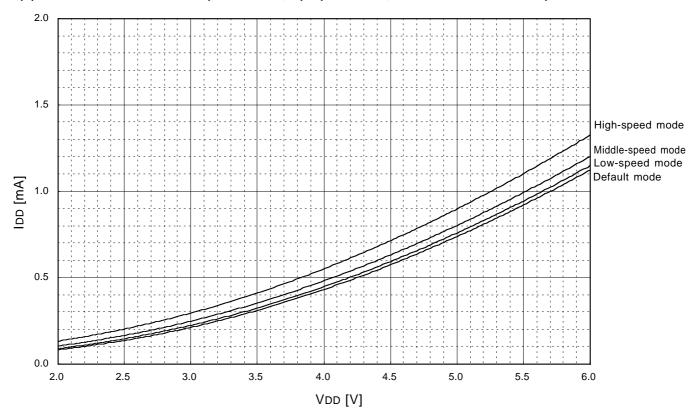
The data shown here are just characteristics examples and are not guaranteed.

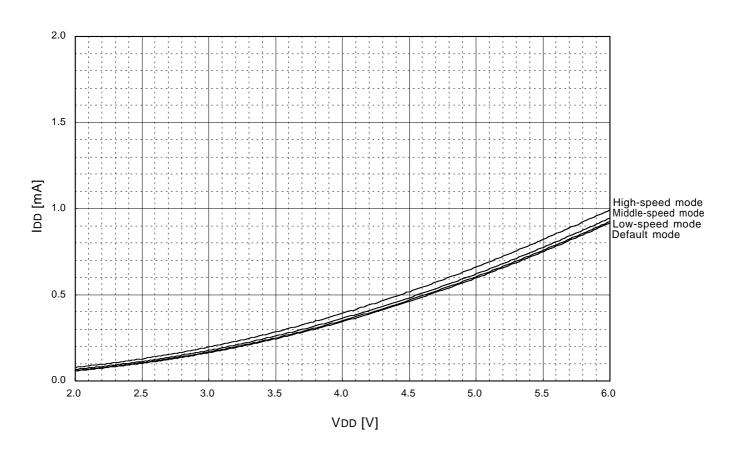

For rated values, refer to "3.1 Electrical characteristics".

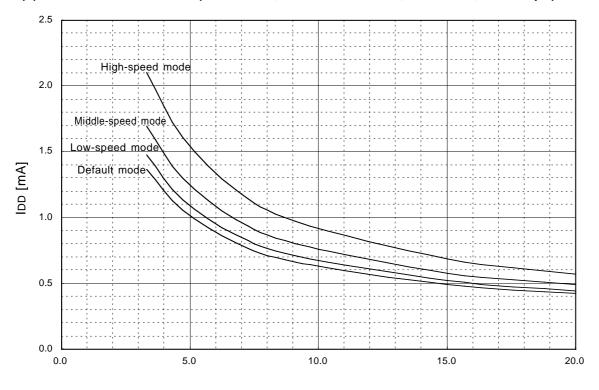
Standard characteristics are different between Mask ROM version and One Time PROM version, due to the difference in the manufacturing processes.


Even in the MCUs which have the same memory type, standard characteristics are different in each sample, too.

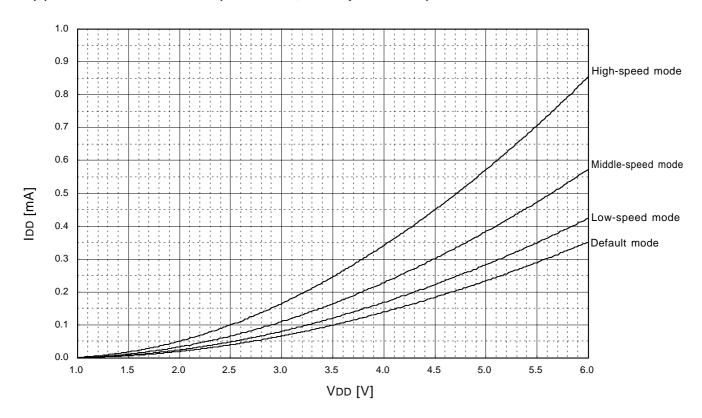
3.2.1 VDD-IDD characteristics


(1) V_{DD}-I_{DD} characteristics (Ta = 25 °C, f(X_{IN}) = 4 MHz, at ceramic resonance)

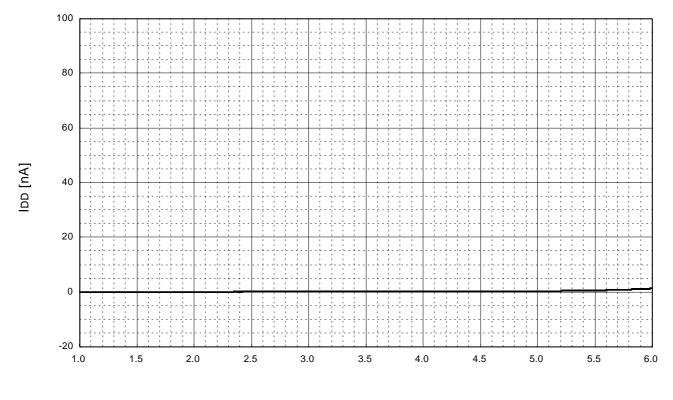

(2) VDD-IDD characteristics (Ta = 25 °C, f(XIN) = 2 MHz, at ceramic resonance)


(3) VDD-IDD characteristics (Ta = 25 °C, f(XIN) = 1 MHz, at ceramic resonance)

(4) V_{DD}-I_{DD} characteristics (Ta = 25 °C, f(X_{IN}) = 400 kHz, at ceramic resonance)

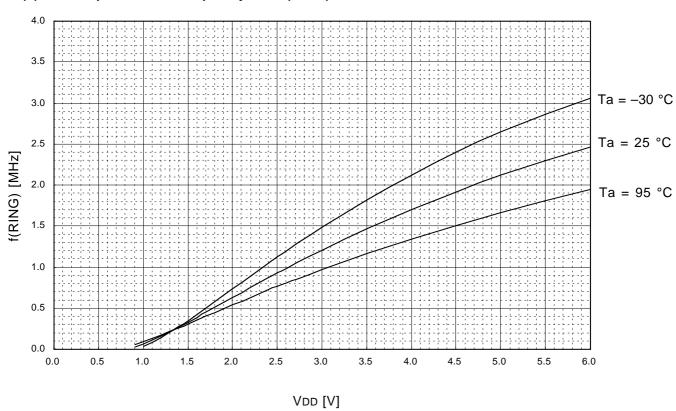


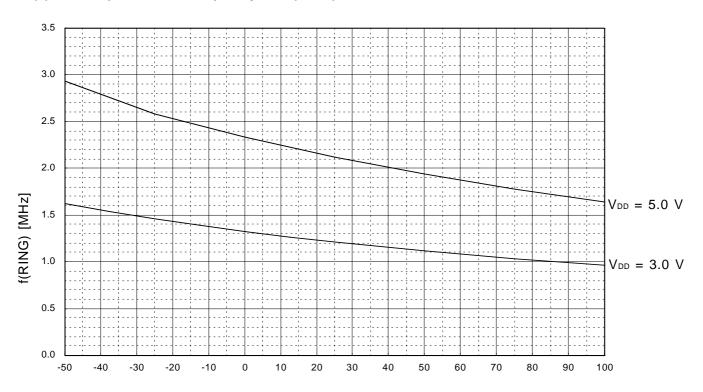
(5) R-IDD characteristics (Ta = 25 °C, at RC oscillation, VDD = 5 V, C = 33 pF)



Resistor R [k Ω]

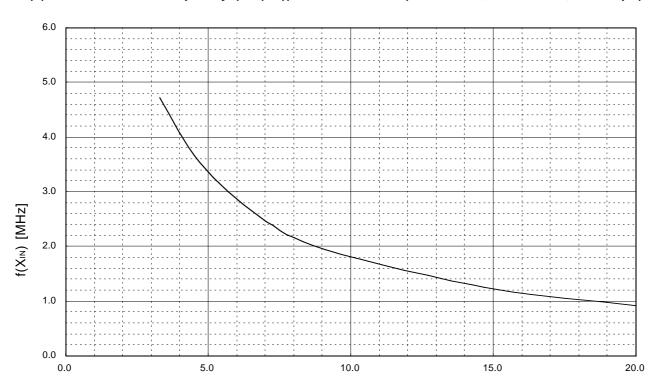
(6) V_{DD}-I_{DD} characteristics (Ta = 25 °C, on-chip oscillator)


(7) V_{DD}-I_{DD} characteristics (Ta = 25 °C, at RAM back-up)

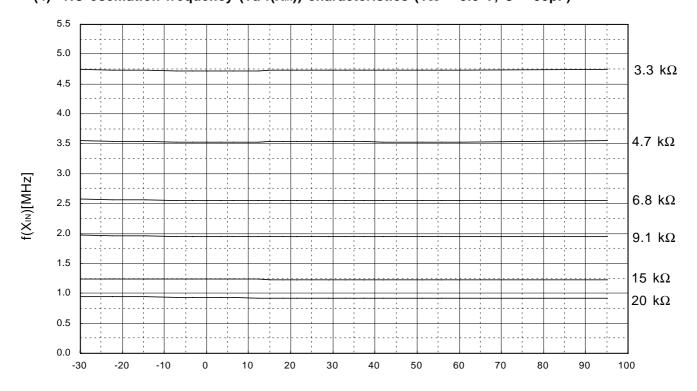

VDD [V]

3.2.2 Frequency characteristics

(1) On-chip oscillator frequency VDD-f(RING) characteristics

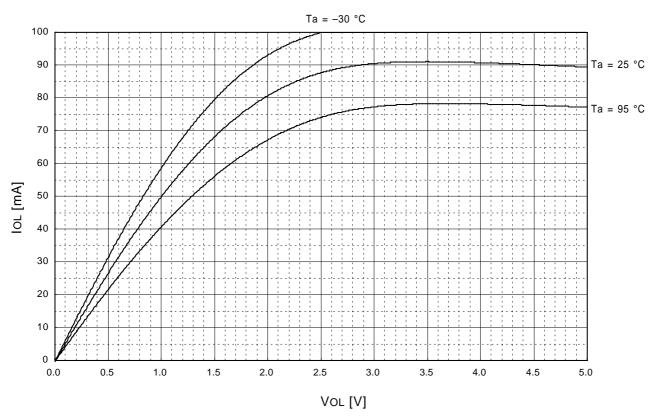


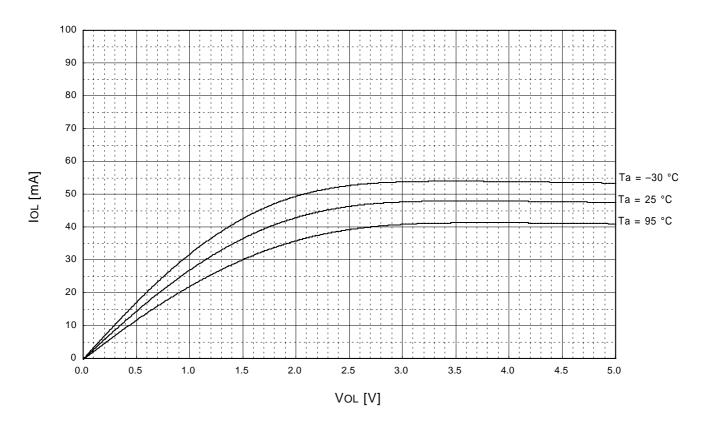
(2) On-chip oscillator frequency Ta-f(RING) characteristics


Ta [°C]

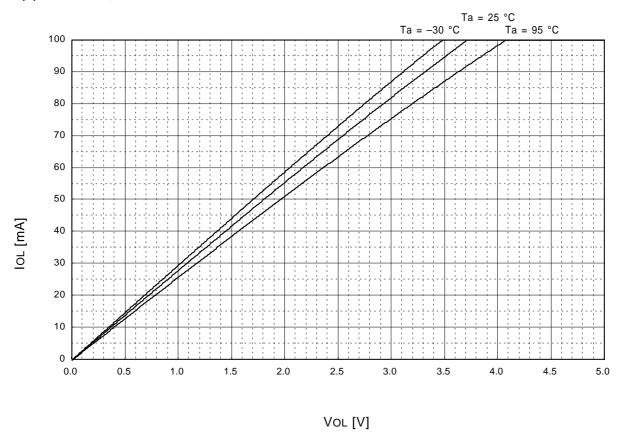
(3) RC oscillation frequency (R-f(X_{IN})) characteristics ($V_{DD} = 5.0 \text{ V}$, Ta = 25 °C, C = 33pF)

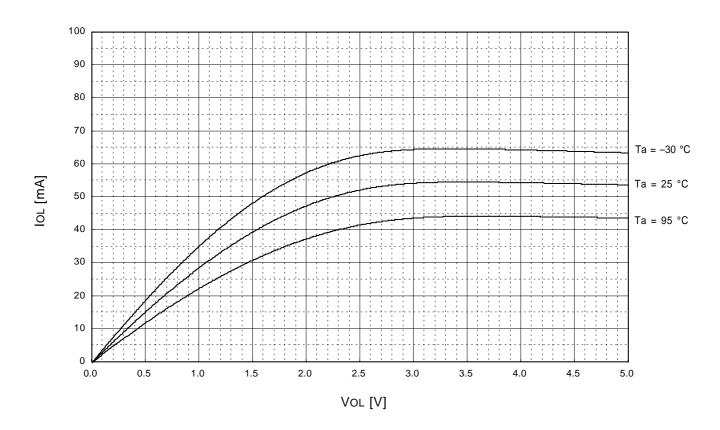
Resistor R [k Ω]


(4) RC oscillation frequency (Ta-f(X_{IN})) characteristics ($V_{DD} = 5.0 \text{ V}$, C = 33pF)

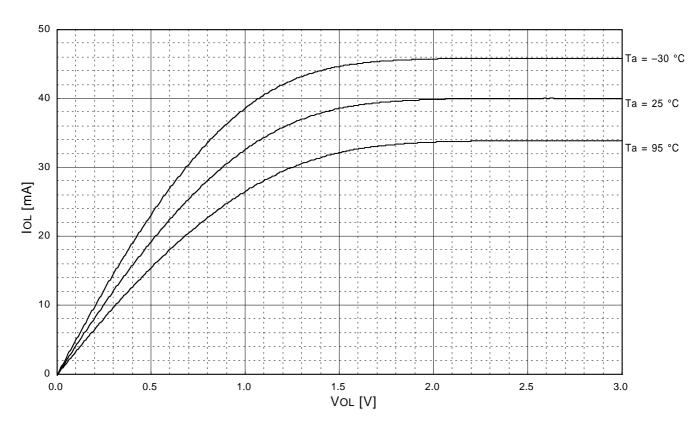

Ta [°C]

3.2.3 Vol-Iol characteristics (VDD = 5 V)

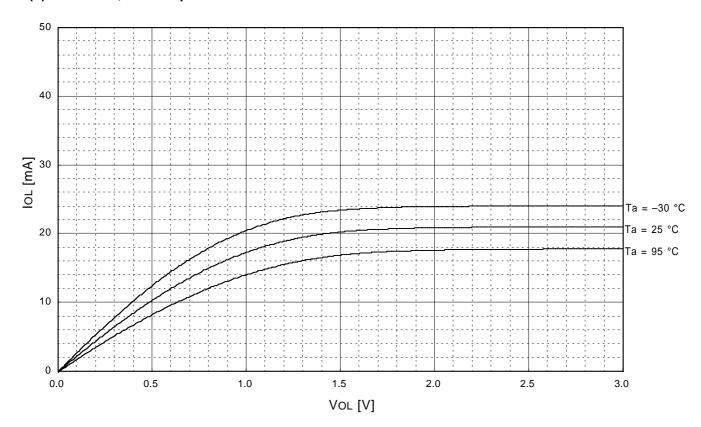

(1) Ports P0, P1


(2) Ports P2, RESET pin

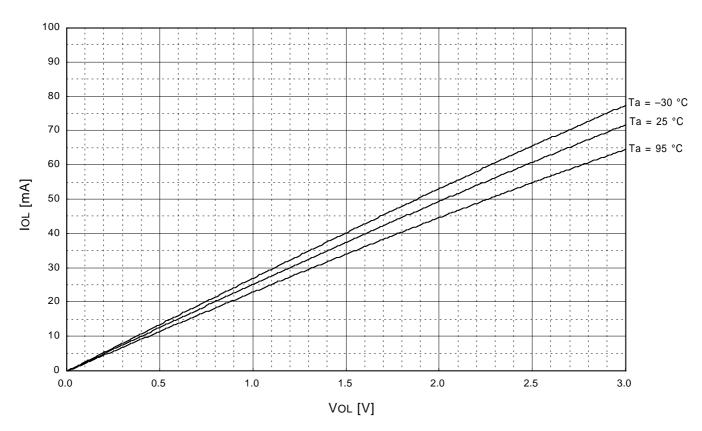
(3) Ports D₀, D₁

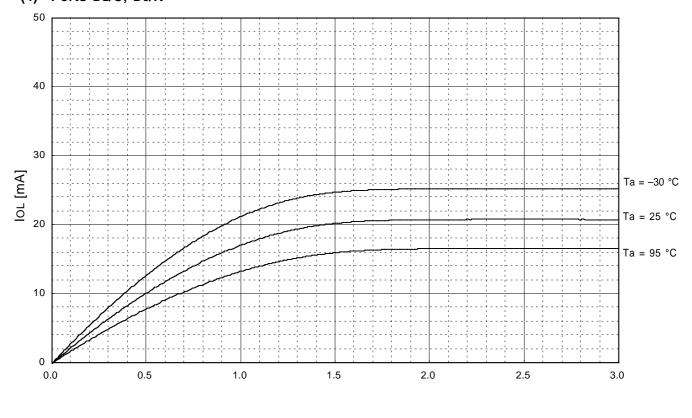


(4) Ports D2/C, D3/K

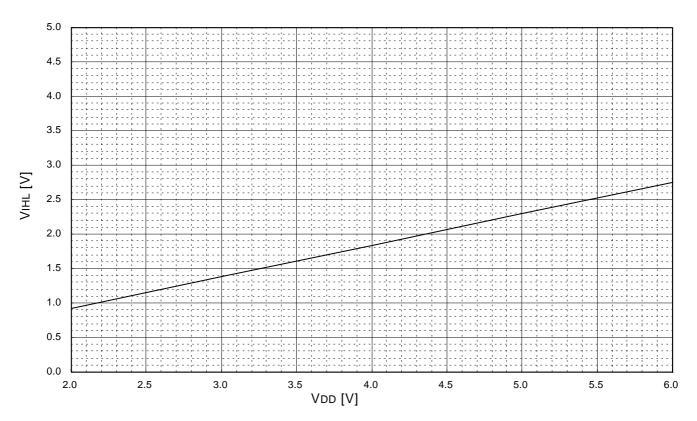


3.2.4 Vol-lol characteristics ($V_{DD} = 3 V$)

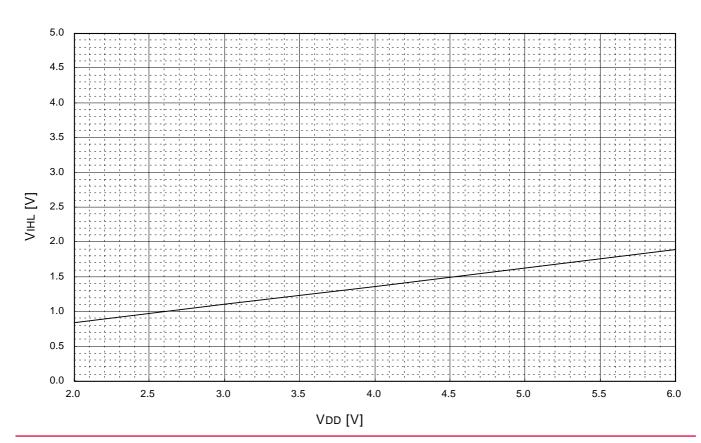

(1) Ports P0, P1


(2) Ports P2, RESET pin

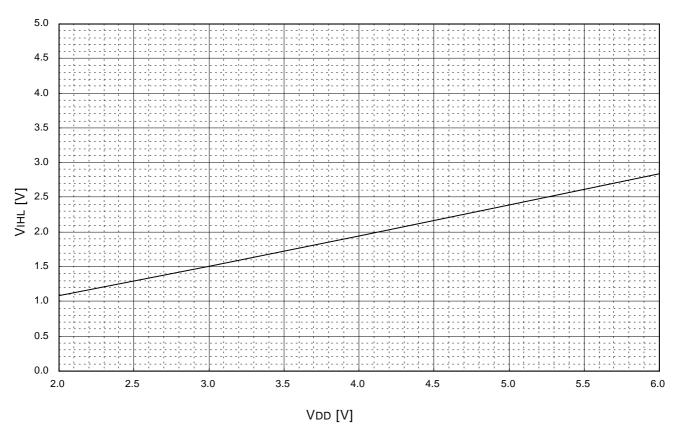
(3) Ports D₀, D₁

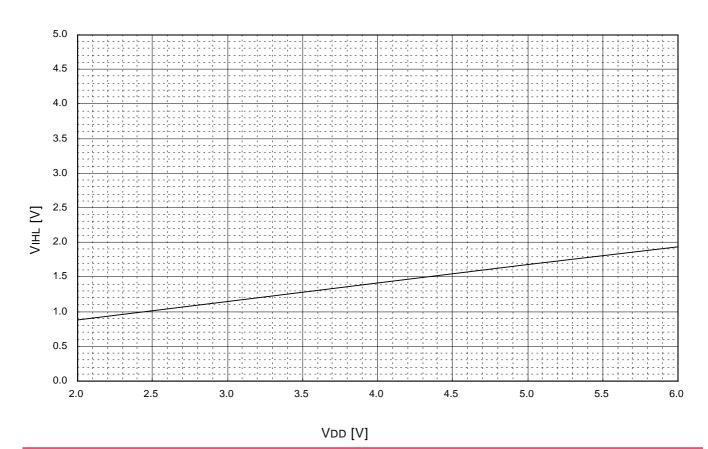


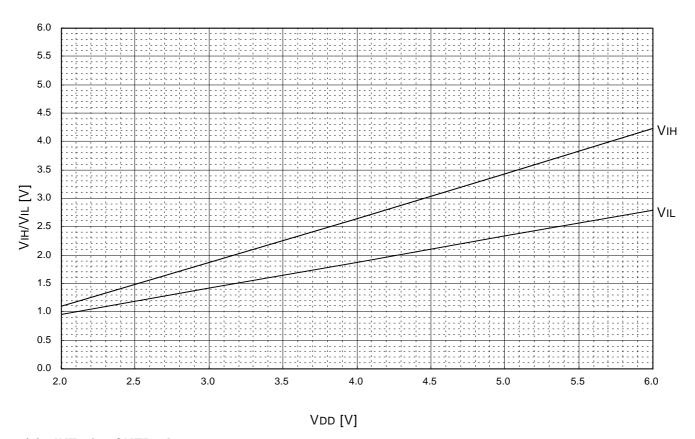
(4) Ports D₂/C, D₃/K

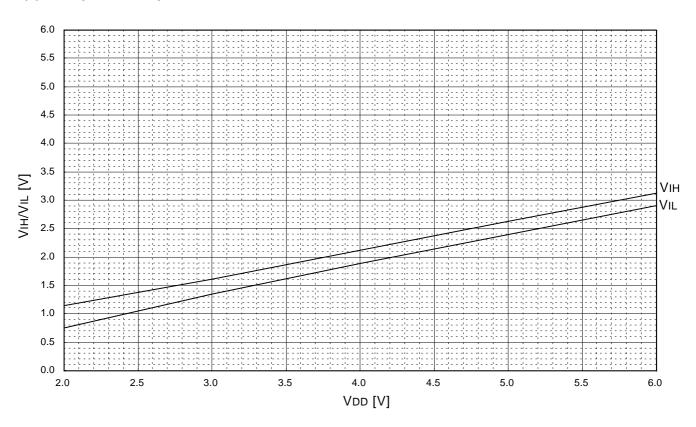


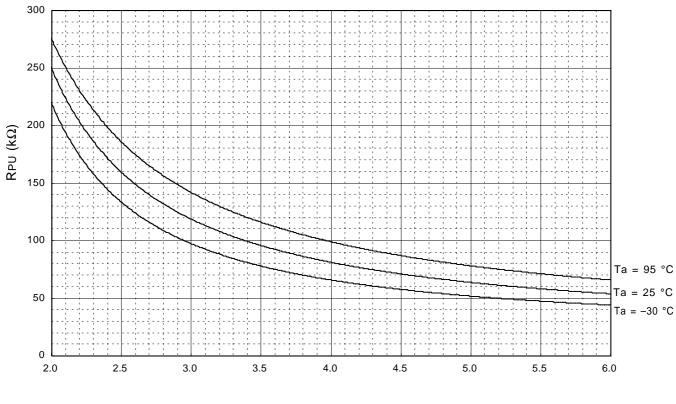
3.2.5 Input threshold (VIH-VIL) characteristics (Ta = 25 °C)


(1) Ports P0-P2, D2, D3

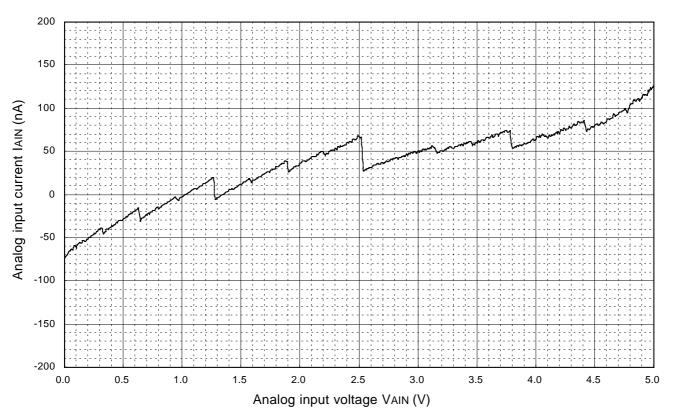

(2) Ports Do, D1


(3) XIN pin

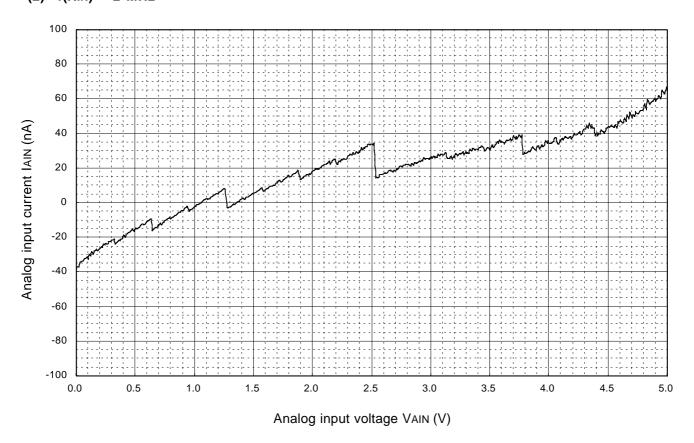

(4) Ports C, K


(5) RESET pin

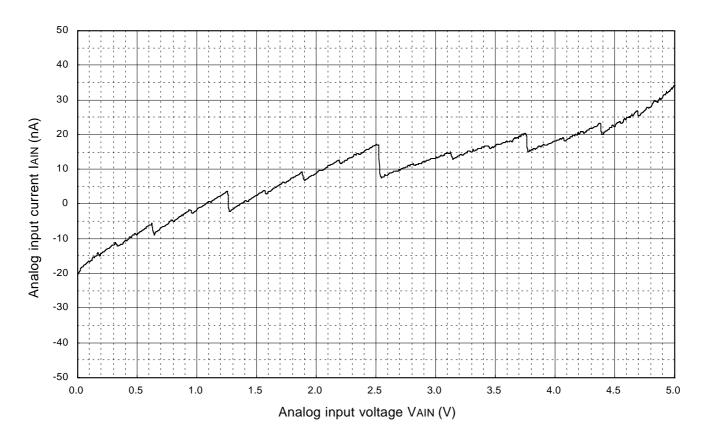
(6) INT pin, CNTR pin

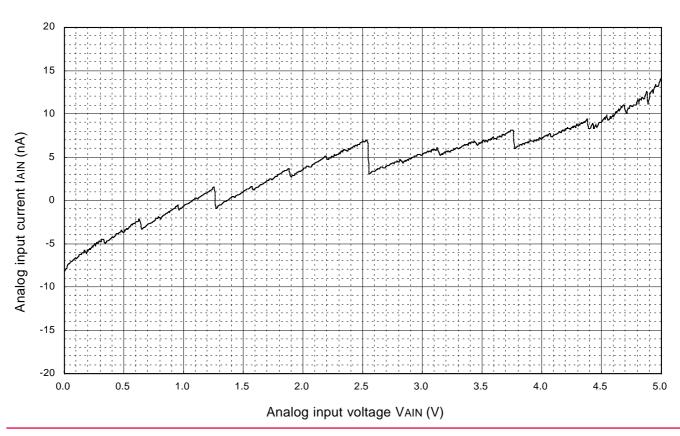


3.2.6 VDD-RPU characteristics (Ports P0-P2, D2/C, D3/K, RESET)

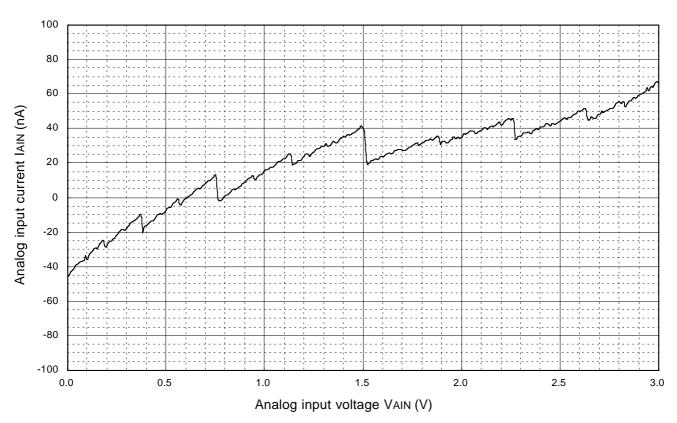


3.2.7 Analog input current characteristics pins VAIN-IAIN (VDD = 5 V, high-speed mode, Ta = 25 °C)

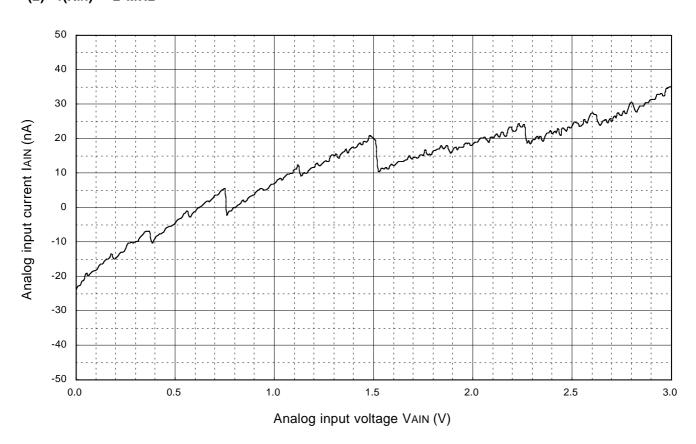

(1) f(XIN) = 4 MHz


(2) f(XIN) = 2 MHz

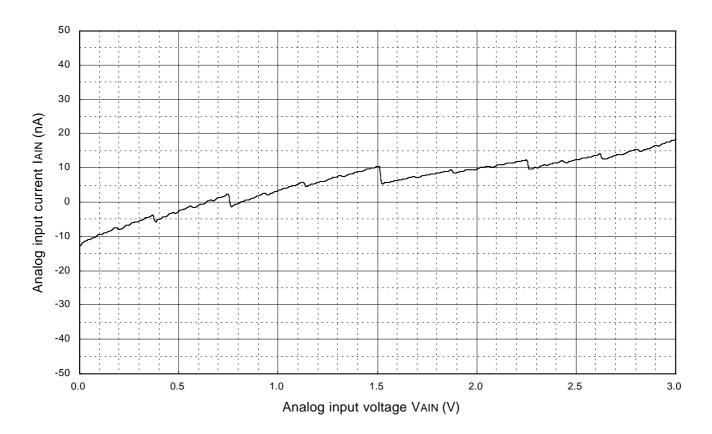
(3) f(XIN) = 1 MHz

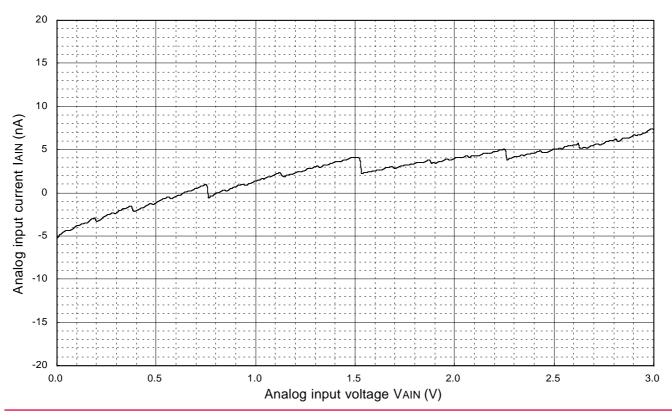


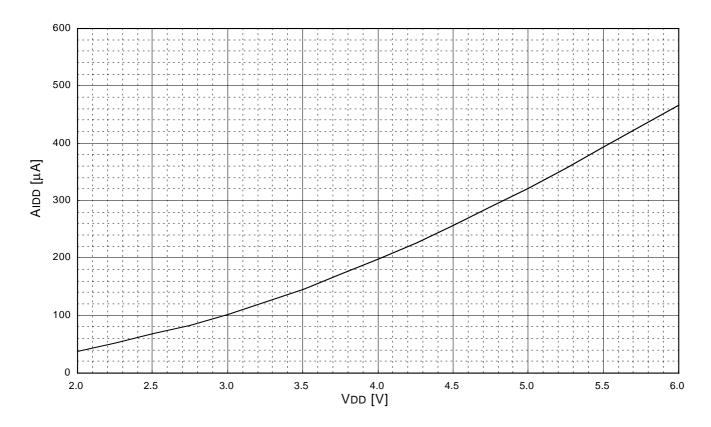
(4) f(XIN) = 400 kHz



3.2.8 Analog input current characteristics pins VAIN-IAIN (VDD = 3 V, high-speed mode, Ta = 25 °C)


(1) f(XIN) = 4 MHz

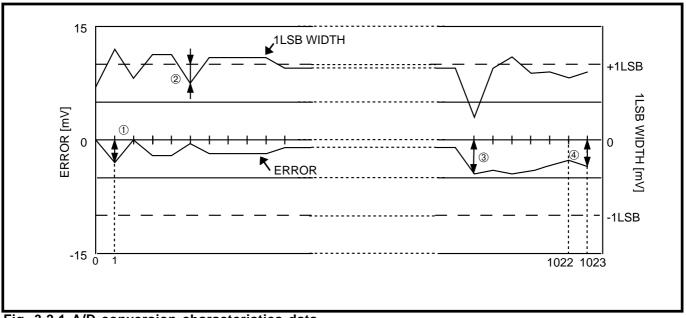

(2) f(XIN) = 2 MHz


(3) f(XIN) = 1 MHz

(4) f(XIN) = 400 kHz

3.2.9 A/D converter operation current (VDD-AlDD) characteristics (Ta = 25 °C)

3.2.10 A/D converter typical characteristics



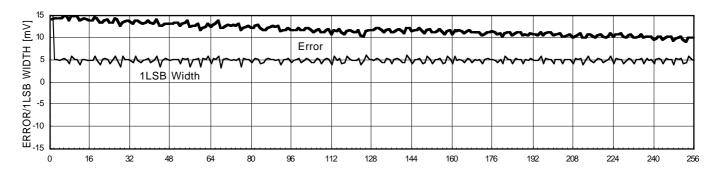
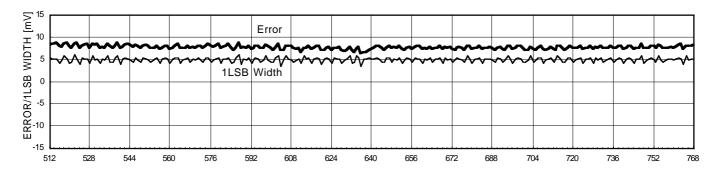
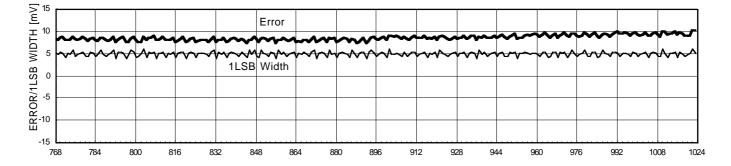
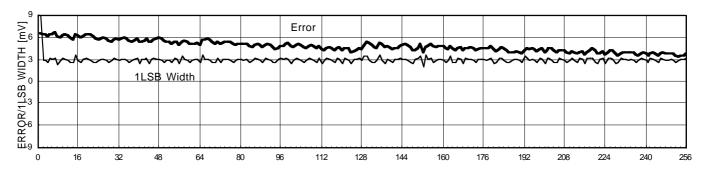

Fig. 3.2.1 A/D conversion characteristics data

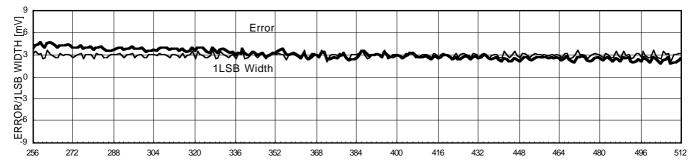
Figure 3.2.1 shows the A/D accuracy measurement data.

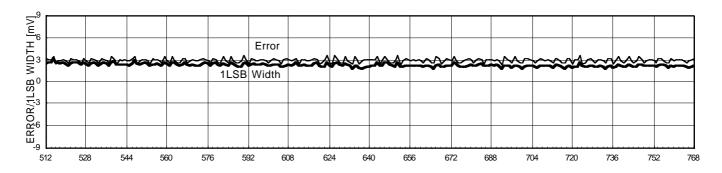

(1) Non-linearity error	This means a deviation from the ideal characteristics between V0 to V1022 of actual A/D conversion characteristics. In Figure 3.2.1, it is $(\text{@}-\text{①})/\text{1LSB}$.
(2) Differencial non-linearity error	This means a deviation from the ideal characteristics between the input voltages V ₀ to V ₁₀₂₂ necessary to change the output data to "1." In Figure 3.2.1, this is ②/1LSB.
(3) Zero transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "0" to "1." In Figure 3.2.1, this is the value of ①.
(4) Full-scale transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "1022" to "1023." In Figure 3.2.1, this is the value of $\textcircled{4}$.
(5) Absolute accuracy	This menas a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics. In Figure 3.2.1, this is the value of ERROR in each of $①$, $③$ and $④$.

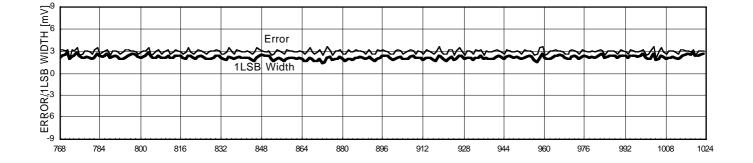

For the A/D converter characteristics, refer to the section 3.1 Electrical characteristics.

(1) VDD = 5.12 V, XIN = 4 MHz (high-speed mode), Ta = 25 °C









(2) VDD = 3.072 V, XIN = 2 MHz (high-speed mode), Ta = 25 °C

3.3 List of precautions

3.3.1 Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

3.3.2 Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

3.3.3 Notes on I/O port

(1) Note when an I/O port is used as an input port

Set the output latch to "1" and input the port value before input. If the output latch is set to "0," "L" level can be input.

(2) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the V_{SS} line and the V_{DD} line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the V_{PP} pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 k Ω resistor which is connected to the CNVss/VPP pin at the shortest distance.

(3) Note on multifunction

- The input/output of D₂, D₃, P1₂ and P1₃ can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20 and P21 can be used even when AIN0 and AIN1 are selected.

(4) Connection of unused pins

Table 3.3.1 shows the connections of unused pins.

(5) SD, RD instructions

When the SD and RD instructions are used, do not set "01002" or more to register Y.

(6) Analog input pins

When both analog input A_{IN0} and A_{IN1} and I/O port P2 function are used, note the following;

· Selection of analog input pins

Even when $P2_0/A_{IN0}$ and $P2_1/A_{IN1}$ are set to pins for analog input, they continue to function as port P2 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1."

Also, the port input function of the pin functions as an analog input is undefined.

(7) Notes on port P1₃/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

Table 3.3.1 Connections of unused pins

	Connections of unused pins	lleene eenditiee
Pin	Connection	Usage condition
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)
Хоит	Open.	System operates by the external clock.
		(The ceramic resonator is selected with the CMCK instruction.)
		System operates by the RC oscillator.
		(The RC oscillation is selected with the CRCK instruction.)
		System operates by the on-chip oscillator. (Note 1)
D ₀ , D ₁	Open. (Output latch is set to "1.")	
	Open. (Output latch is set to "0.")	
	Connect to Vss.	
D ₂ /C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P0 ₀ –P0 ₃	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P1 ₂ /CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P1 ₃ /INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT
		pin is disabled. (Notes 4, 5)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P2 ₀ /A _{IN0}	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	<u> </u>	

- Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).
 - 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
 - 3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state.

 Do not select the key-on wakeup function.
 - 4: When selecting the key-on wakeup function, select also the pull-up function.
 - 5: Clear the bit 3 (I1₃) of register I1 to "0" to disable to input to INT pin (after reset: I1₃ = "0")

(Note when connecting to Vss)

• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

3.3.4 Notes on interrupt

(1) Setting of INT interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P1₃/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(2) Setting of INT pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P1₃/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(3) Multiple interrupts

Multiple interrupts cannot be used in the 4506 Group.

(4) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(5) P1₃/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P1₃/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 3.3.1 ①) and then, change the bit 3 of register I1.

In addition, execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 3.3.1 ②).

Also, set the **NOP** instruction for the case when a skip is performed with the **SNZ0** instruction (refer to Figure 3.3.1 ③).

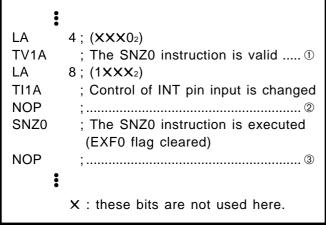


Fig. 3.3.1 External 0 interrupt program example-1

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 3.3.2 ①).

```
LA 0; (00XX<sub>2</sub>)
TI1A ; Input of INT disabled ......①
DI
EPOF
POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 3.3.2 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P1₃/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P1₃/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 3.3.3 ①) and then, change the bit 2 of register I1.

In addition, execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 3.3.3 ②).

Also, set the **NOP** instruction for the case when a skip is performed with the **SNZ0** instruction (refer to Figure 3.3.3 ③).

```
:
LA
        ; (XXX0<sub>2</sub>)
TV1A
         ; The SNZ0 instruction is valid ..... ①
LA
     12 ; (X1XX<sub>2</sub>)
TI1A
         ; Interrupt valid waveform is changed
NOP
         ..... ②
SNZ0
         ; The SNZ0 instruction is executed
         (EXF0 flag cleared)
NOP
         ...... ③
        X: these bits are not used here.
```

Fig. 3.3.3 External 0 interrupt program example-3

(6) Power down instruction

Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction.

3.3.5 Notes on timer

(1) Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

(2) Count source

Stop timer 1 or 2 counting to change its count source.

(3) Reading the count values

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(4) Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

(5) Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflow.

(6) Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1). Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

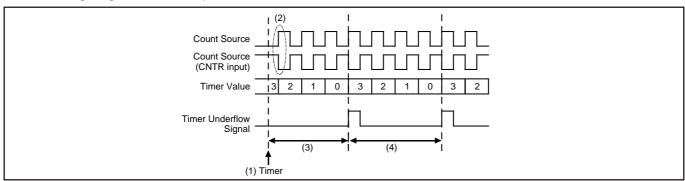


Fig. 3.3.4 Timer count start timing and count time when operation starts (T1, T2)

(7) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(8) Pulse width input to CNTR pin

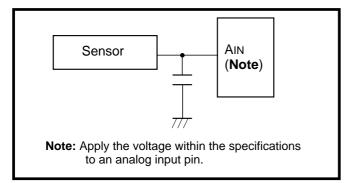
Table 3.3.2 shows the recommended operating condition of pulse width input to CNTR pin.

Table 3.3.2 Recommended operating condition of pulse width input to CNTR pin

Parameter	Condition	Rating value			Unit	
r didilietei		Min.	Тур.	Max.	Onit	
Timer external input period	High-speed mode	3/f(X _{IN})				
("H" and "L" pulse width)	Middle-speed mode	6/f(X _{IN})				
	Low-speed mode	12/f(X _{IN})			S	
	Default mode	24/f(X _{IN})				

3.3.6 Notes on A/D conversion

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the **ADST** instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 3.3.5 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 3.3.6 In addition, test the application products sufficiently.

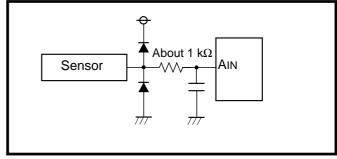


Fig. 3.3.6 Analog input external circuit example-2

Fig. 3.3.5 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode with bit 3 of register Q1 (refer to Figure 3.3.7①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the **SNZAD** instruction to clear the ADF flag.

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with bit 3 of register Q1 during operating the A/D converter.

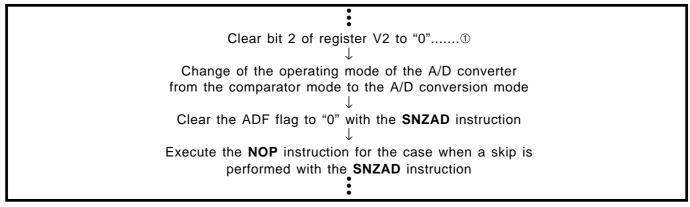


Fig. 3.3.7 A/D converter operating mode program example

(4) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(5) Analog input pins

Even when P20/AIN0 and P21/AIN1 are set to pins for analog input, they continue to function as P2 I/O. Accordingly, when any of them are used as these ports and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

(6) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(7) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 3.3.3 shows the recommended operating conditions when using A/D converter.

Table 3.3.3 Recommended operating conditions (when using A/D converter)

Parameter Condition		Limits			Unit	
i didilietei	Condition			Тур.	Max.	
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)		0.1		4.4	
(at ceramic resonance)	VDD = 2.7 to 5.5 V (middle-speed mode)		0.1		2.2	
	VDD = 2.7 to 5.5 V (low-speed mode)		0.1		1.1	
	VDD = 2.7 to 5.5 V (default mode)		0.1		0.5	
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)		0.1		4.4	
(at RC oscillation) (Note)	VDD = 2.7 to 5.5 V (middle-speed mode)		0.1		2.2	MHz
	VDD = 2.7 to 5.5 V (low-speed mode)		0.1		1.1	1011 12
	VDD = 2.7 to 5.5 V (default mode)		0.1		0.5	
System clock frequency	VDD = 2.7 to 5.5 V (high-speed mode)		0.1		3.2	
(ceramic resonance	VDD = 2.7 to 5.5 V (middle-speed mode)	Duty	0.1		1.6	
selected, at external	VDD = 2.7 to 5.5 V (low-speed mode)	40 % to 60 %	0.1		0.8	
clock input)	VDD = 2.7 to 5.5 V (default mode)		0.1	·	0.4	

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.3.7 Notes on reset

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3.3.8 Notes on RAM back-up

(1) Key-on wakeup function

After setting ports (P0, P1, D_2/C , D_3/K , P_{20}/A_{IN0} and P_{21}/A_{IN1} specified with register K0–K2) which keyon wakeup function is valid to "H," execute the **POF2** instruction.

If one of ports which key-on wakeup function is valid is in the "L" level state, system returns from the RAM back-up after the **POF2** instruction is executed.

(2) POF2 instruction

Execute the **POF2** instruction immediately after executing the **EPOF** instruction to enter the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the **POF2** instruction. Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF2** instruction.

(3) Return from RAM back-up

After system returns from RAM back-up, set the undefined registers and flags.

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Watchdog timer

The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(5) P1₃/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

(6) External clock

When the external signal clock is used as the source oscillation $(f(X_{IN}))$, note that the RAM back-up mode (**POF2** instruction) cannot be used.

3.3.9 Notes on oscillation control

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(3) External clock

When the external signal clock is used as the source oscillation $(f(X_{IN}))$, note that the RAM back-up mode (**POF2** instruction) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

3.3.10 Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

3.3.11 Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

3.4 Notes on noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

3.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.

The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

(1) Package

Select the smallest possible package to make the total wiring length short.

Reason

The wiring length depends on a microcomputer package. Use of a small package, for example QFP and not DIP, makes the total wiring length short to reduce influence of noise.

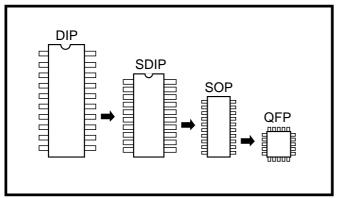


Fig. 3.4.1 Selection of packages

(2) Wiring for RESET input pin

Make the length of wiring which is connected to the RESET input pin as short as possible. Especially, connect a capacitor across the RESET input pin and the Vss pin with the shortest possible wiring.

Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required. If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.

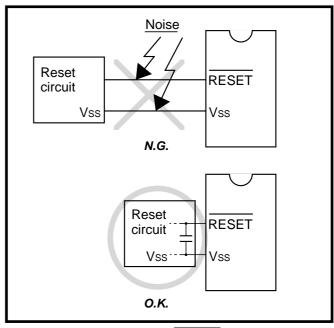


Fig. 3.4.2 Wiring for the RESET input pin

(3) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

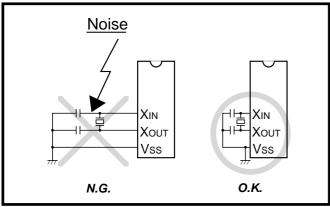


Fig. 3.4.3 Wiring for clock I/O pins

Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

(4) Wiring to CNVss pin

Connect the CNVss pin to the Vss pin with the shortest possible wiring.

Reason

The operation mode of a microcomputer is influenced by a potential at the CNVss pin. If a potential difference is caused by the noise between pins CNVss and Vss, the operation mode may become unstable. This may cause a microcomputer malfunction or a program runaway.

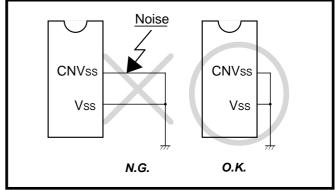


Fig. 3.4.4 Wiring for CNVss pin

(5) Wiring to VPP pin of built-in PROM version In the built-in PROM version of the 4506 Group, the CNVss pin is also used as the built-in PROM power supply input pin VPP.

When the VPP pin is also used as the CNVss pin

Connect an approximately 5 k Ω resistor to the VPP pin the shortest possible in series and also to the Vss pin. When not connecting the resistor, make the length of wiring between the VPP pin and the Vss pin the shortest possible (refer to **Figure 3.4.5**)

Note: Even when a circuit which included an approximately 5 $k\Omega$ resistor is used in the Mask ROM version, the microcomputer operates correctly.

Reason

The VPP pin of the built-in PROM version is the power source input pin for the built-in PROM. When programming in the built-in PROM, the impedance of the VPP pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the VPP pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.

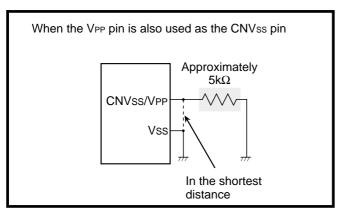


Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version

3.4.2 Connection of bypass capacitor across Vss line and VDD line

Connect an approximately 0.1 μ F bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

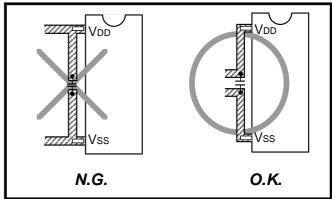


Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line

3.4.3 Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

Reason

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

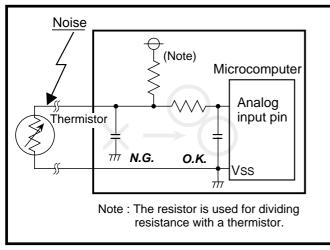


Fig. 3.4.7 Analog signal line and a resistor and a capacitor

3.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

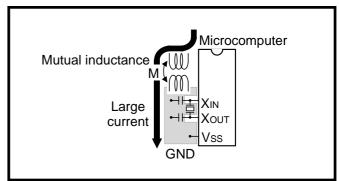


Fig. 3.4.8 Wiring for a large current signal line

(2) Installing oscillator away from signal lines where potential levels change frequently Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

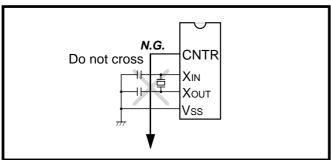


Fig. 3.4.9 Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

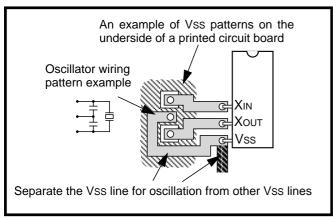


Fig. 3.4.10 Vss pattern on the underside of an oscillator

3.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

3.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

- <The main routine>
- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

N+1≥ (Counts of interrupt processing executed in each main routine)

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

- <The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

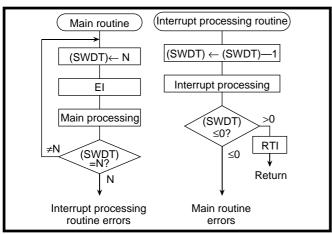
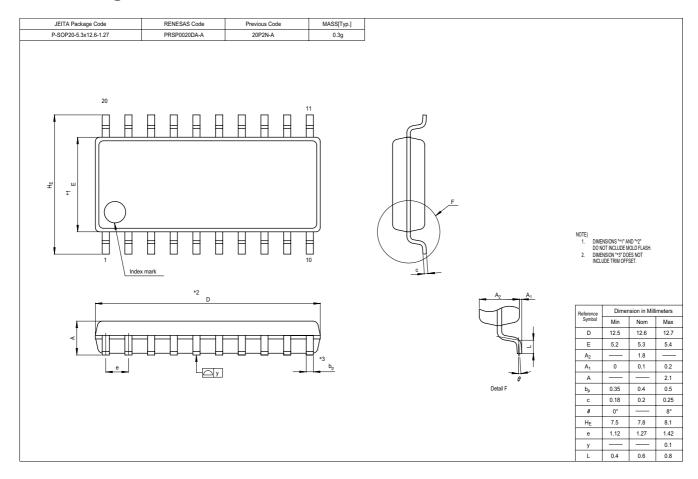
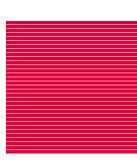



Fig. 3.4.11 Watchdog timer by software

3.5 Package outline

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL 4506 Group


Publication Data: Rev.1.00 Nov 29, 2002

Rev.2.01 Feb 07, 2005

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

4506 Group User's Manual

